Non-negative entropy production criteria for numerical simulations of flows in porous media

Authors

  • Andrey Aleksandrovich Afanasyev Institute of Mechanics of Moscow State University, ZAO «T-Services»
  • Oleg Eduardovich Melnik Institute of Mechanics of Moscow State University, ZAO «T-Services»

DOI:

https://doi.org/10.7242/1999-6691/2013.6.3.37

Keywords:

finite-difference scheme, numerical simulation, porous media, entropy, thermodynamics

Abstract

The problem of constructing finite-difference schemes for non-isothermal multiphase flows in porous media is investigated. We consider the general case where the filtration of a mixture with an arbitrary number of components and phases is calculated. We derive the non-negative entropy production criteria for the upwind numerical scheme and propose the approximations of fluxes satisfying the criteria. It is shown that the sign of the entropy production is strongly affected by the consistency of mixture properties with the laws of thermodynamics.

Downloads

Download data is not yet available.

References

Samarskij A.A., Popov U.P. Raznostnye metody resenia zadac gazovoj dinamiki. - M.: Editorial URSS, 2004. - 424 s.
2. Kireev I.V., Nemirovskij U.V. Konservativnyj cislennyj metod resenia linejnyh kraevyh zadac statiki uprugih obolocek vrasenia // Vycisl. meh. splos. sred. - 2012. - T. 5, No 1. - S. 85-99. DOI
3. De Groot S.R. Thermodynamics of irreversible processes. - Amsterdam: North-Holland, 1963. - 242 p.
4. Afanas’ev A.A. Ob odnom predstavlenii uravnenij mnogokomponentnoj mnogofaznoj fil’tracii // PMM. - 2012. -T. 76, No 2. - S. 265-274. (Afanas’ev A.A. A representation of the equations of multicomponent multiphase seepage // J. Appl. Math. Mech. - 2012. - V. 76, N. 2. - P. 192-198.) DOI
5. Godunov S.K. Elementy mehaniki splosnoj sredy. - M.: Nauka, 1978. - 304 s.
6. Aziz K., Settari A. Petroleum reservoir simulation. - London-NY: Applied Science Publishers, 1979. - 476 p.
7. Pruess K., Spycher N. ECO2N - A fluid property module for the TOUGH2 code for studies of CO2 storage in saline aquifers // Energ. Convers. Manage. - 2007. - V. 48, N. 6. - P. 1761-1767. DOI
8. TOUGH2 User’s Guide, Version 2.1: Report (revised) / K. Pruess et al. - Berkeley, Calif., U.S.: Lawrence Berkeley National Laboratory, 2011. - 214 r. - LBNL-43134.
9. Randall J.L. Finite volume methods for hyperbolic problems. - Cambridge: Cambridge University Press, 2002. - 558 p. DOI
10. Landau L.D., Lifsic E.M. Teoreticeskaa fizika. - M.: Fizmatlit, 2005. - T. 5. Statisticeskaa fizika. - C. 1. - 616 s.
11. Brusilovskij A.I. Fazovye prevrasenia pri razrabotke mestorozdenia nefti i gaza. - M.: Graal’, 2002. - 575 s.
12. Afanas’ev A.A., Mel’nik O.E. O postroenii konecno-raznostnoj shemy rasceta fil’tracii pri okolokriticeskih termodinamiceskih usloviah // Vycisl. meh. splos. sred. - 2013. - T. 6, No 2. - S. 246-255. DOI

Published

2013-10-18

Issue

Section

Articles

How to Cite

Afanasyev, A. A., & Melnik, O. E. (2013). Non-negative entropy production criteria for numerical simulations of flows in porous media. Computational Continuum Mechanics, 6(3), 328-335. https://doi.org/10.7242/1999-6691/2013.6.3.37