The problems of research of stochastic and dynamic properties of system with Lennard-Jones potential by means of molecular dynamics method

Authors

  • Igor Fedorovich Golovnev Khristianovich Institute of Theoretical and Applied Mechanics SB RAS
  • Elena Igorevna Golovneva Khristianovich Institute of Theoretical and Applied Mechanics SB RAS
  • Vasiliy Mikhailovich Fomin Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

DOI:

https://doi.org/10.7242/1999-6691/2013.6.3.36

Keywords:

molecular-dynamics method, systems of atoms described by a Lennard-Jones potential, invariance with respect to time-pulse inversion, irreversibility problem

Abstract

Correspondence analysis is carried out to compare the numerical results obtained by the molecular-dynamics method and the basic dynamic concepts of fundamental theories (classical mechanics, statistical physics, and thermodynamics). As an example problem, we study the properties of the system of argon atoms described by a Lennard-Jones interaction potential. The invariant features of phase trajectories with respect to time-impulse inversion are formulated in terms of the algebraic modification of von Neumann classical mechanics. Application of high-accuracy numerical schemes to molecular-dynamics simulations yields the results that obey the symmetry criterion with respect to pulse inversion and the reversibility criterion of trajectories with respect to time reversion. It is shown that these results are locally stable in the Lyapunov sense over the time interval up to 100 ps.

Downloads

Download data is not yet available.

References

Rahman A. Correlations in the motion of atoms in liquid argon // Phys. Rev. - 1964. - V. 136, N. 2A. - P. A405-A411. DOI
2. Verlet L. Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules // Phys. Rev. - 1967. - V. 159, N. 1. - P. 98-103. DOI
3. Lagar’kov A.N., Sergeev V.M. Vycislenie koefficientov perenosa plotnyh gazov i zidkostej metodom molekularnoj dinamiki // TVT. - 1970. - T. 8, No 6. - S. 1309-1311.
4. Lagar’kov A.N., Sergeev V.M. Issledovanie perenosimyh i termodinamiceskih svojstv argona metodom molekularnoj dinamiki // TVT. - 1973. - T. 11, No 3. - S. 513-522.
5. Levesque D., Verlet L., Kurkijarvi J. Computer "experiments" on classical fluids. IV. Transport properties and time-correlation functions of the Lennard-Jones liquid near its triple point // Phys. Rev. A7. - 1973. - V. 7, N. 5. - P. 1690-1700. DOI
6. Lagar’kov A.N., Sergeev V.M. Metod molekularnoj dinamiki v statisticeskoj fizike // UFN. - 1978. - T. 125, No 7. - S. 409-448.
7. Biler Dz. Masinnoe modelirovanie pri issledovanii materialov. - M.: Mir, 1974. - 416 c.
8. Heerman D.V. Metody komp’uternogo eksperimenta v teoreticeskoj fizike. - M.: Nauka, 1990. - 176 c.
9. Allen M.P., Tildesley D.J. Computer simulation of liquids. - New York: Oxford University Press, 1987. - 385 p.
10. Metod molekularnoj dinamiki v fiziceskoj himii / Pod red. U.K. Tovbina. - M.: Nauka, 1996. - 334 s.
11. Norman G.E., Stegajlov V.V. Stohasticeskie svojstva molekularno-dinamiceskoj Lennard-Dzonsovskoj sistemy v ravnovesnom i neravnovesnom sostoaniah // ZETF. - 2001. - T. 119, No 5. - S. 1011-1020.
12. Norman G.E., Stegailov V.V. Stochastic and dynamic properties of molecular dynamics systems: simple liquids, plasma and electrolytes, polymers // Comput. Phys. Commun. - 2002. - V. 147, N. 1-2. - P. 678-683. DOI
13. Golovnev I.F., Golovneva E.I., Fomin V.M. Problemy primenenia metoda molekularnoj dinamiki pri issledovanii neravnovesnyh processov v mezomehanike // Fiz. mezomeh. - 2012. - T. 15, No 5. - S. 37-49.
14. Norman G.E., Stegajlov V.V. Stohasticeskaa teoria metoda klassiceskoj molekularnoj dinamiki // Matem. modelirovanie. - 2012. - T. 24, No 6. - C. 3-44.
15. Bazhirov T.T., Norman G.E., Stegailov V.V. Cavitation in liquid metals under negative pressures. Molecular dynamics modeling and simulation // J. Phys.: Condens. Matter. - 2008. - V. 20, N. 11. - P. 114113. DOI
16. Rudak V.A., Ivanov D.A. Komp’uternoe modelirovanie konecnogo cisla vzaimodejstvuusih castic // Doklady AN VS RF. - 2003. - No 1. - S. 30-38.
17. Rudak V.A., Ivanov D.A. Dinamiceskie i stohasticeskie svojstva otkrytoj sistemy konecnogo cisla uprugo vzaimodejstvuusih castic // Trudy NGASU. - 2004. - T. 7, No 3 (30). - S. 47-58.
18. Koopman B.O. Hamiltonian systems and transformations in Hilbert space // P. Natl. Acad. SCI USA. - 1931. - V. 17, N. 5. - P. 315-318. DOI
19. Neumann J.V. Allgemeine eigenwerttheorie hermitescher funktionaloperatoren // Math. Ann. - 1930. -V. 102, N. 1. - P. 49-131. DOI
20. Brout R., Prigogine I. Statistical mechanics of irreversible processes Part VIII: general theory of weakly coupled systems // Physica. - 1956. - V. 22, N. 6-12. - P. 621-636. DOI
21. Balescu R., Prigogine I. Irreversible processes in gases II. The equations of evolution // Physica. - 1959. - V. 25, N. 1-6. - P. 302-323. DOI
22. Balesku R. Ravnovesnaa i neravnovesnaa statisticeskaa mehanika. - M.: Mir, 1978. - T. 1. - 405 s.
23. Zwanzig R.W. Statistical mechanics of irreversibility / Lectures in theoretical physics. - V. III. - NY: Interscience publishers, Inc. - 1961. - P. 106-141.
24. Faddeev L.D., Akubovskij O.A. Lekcii po kvantovoj mehanike. - L.: Izd-vo LGU, 1980. - 200 s.
25. Ulenbek Dz., Ford Dz. Lekcii po statisticeskoj mehanike. - M.: Mir, 1965. - 307 s.
26. Alder B.J., Wainwright T.E. Studies in molecular dynamics. I. General method // J. Chem. Phys. - 1959. - V. 31, N. 2. - P. 459-466. DOI
27. Terleckij A.P. Statisticeskaa fizika: Uceb. posobie. - M.: Vyssaa skola, 1994. - 350 s.
28. Kolmogorov A.N. Teoria veroatnostej i matematiceskaa statistika: Sb. statej / Otv. red. U.V. Prohorov. - M.: Nauka, 1986. - 534 c.

Published

2013-10-18

Issue

Section

Articles

How to Cite

Golovnev, I. F., Golovneva, E. I., & Fomin, V. M. (2013). The problems of research of stochastic and dynamic properties of system with Lennard-Jones potential by means of molecular dynamics method. Computational Continuum Mechanics, 6(3), 317-327. https://doi.org/10.7242/1999-6691/2013.6.3.36