Software package "COMPOSITE-2D" and its use for calculating the stress-strain state of different ensembles of inclusions in elastomeric composites and their effective properties
DOI:
https://doi.org/10.7242/1999-6691/2013.6.3.35Keywords:
matrix, filler, stress-strain state, macroscopic properties, structure, plane problemAbstract
We have developed a software package "COMPOSITE-2D" for calculating the stress-strain state of elastomeric composites containing hundreds of spherical inclusions (plane problem) and their effective properties. Structural stresses and strains at any given point of the material are evaluated using the theory of functions of a complex variable. Comparison is made between the results of calculations for the ensemble of regular inclusions obtained by the software package "COMPOSITE-2D" and the numerical solution for the periodicity cell obtained by a standard formulation of the finite element method. An example of calculation of the relationship between the effective modulus of elasticity and the degree of reinforcement of the system by solid inclusions is presented.
Downloads
References
Bahvalov N.S. Osrednenie nelinejnyh uravnenij s castnymi proizvodnymi s bystro oscilliruusimi koefficientami // DAN SSSR. - 1975. - T. 225, No 2. - S. 249-252.
2. Grigoluk E.I., Fil’stinskij E.A. Perforirovannye plastiny i obolocki. - M.: Nauka, 1970. - 556 s.
3. Vanin G.A. K osnovam teorii kompozicionnyh materialov s uporadocennoj strukturoj // Prikladnaa mehanika. - 1983. - T. 19, No 3. - S. 9-18.
4. Kosmodamianskij A.S. Ploskaa zadaca teorii uprugosti dla plastin s otverstiami, vyrezami i vystupami. - Kiev: Visa skola, 1975. - 227 s.
5. Mol’kov V.A., Pobedra B.E. Effektivnye harakteristiki odnonapravlennogo voloknistogo kompozita s periodiceskoj strukturoj // MTT. - 1985. - No 2. - S. 119-130.
6. Isupov L.P. Variant metoda samosoglasovania dla uprugoj kompozitnoj sredy // Vestn. MGU. Ser. 1. Matematika, mehanika. - 1985. - No 6. - S. 62-66.
7. Lipatov U.S. Fiziceskaa himia napolnennyh polimerov. - M.: Himia, 1977. - 304 s.
8. Hill R. Novye dokazatel’stva nekotoryh ekstremal’nyh principov teorii uprugosti // Mehanika: Sb. perev. - M.: Mir, 1965. - T. 90, No 2. - S. 130-136.
9. Kristensen R. Vvedenie v mehaniku kompozitov. - M.: Mir, 1982. - 336 s.
10. Sendecki Dz. Mehanika kompozicionnyh materialov: Kompozicionnye materialy: V 8 t. / Pod red. L. Brautmana, R. Kroka. - M.: Mir, 1978. - T. 2.- 564 s.
11. Pan’kov A.A. Metody samosoglasovania mehaniki kompozitov. - Perm’: Izd-vo PGTU, 2008. - 253 s.
12. Pan’kov A.A. Obobsennyj metod samosoglasovania dla kompozitov so slucajnymi uprugimi svojstvami faz sostavnyh ili polyh vklucenij // Mehanika kompozicionnyh materialov i konstrukcij. - 2000. - T. 6, No 3. - S. 310-332.
13. Bahvalov N.S., Panasenko G.P. Osrednenie processov v periodiceskih sredah. - M.: Nauka, 1984. - 352 s.
14. Kozhevnikova L.L., Moshev V.V. and Rogovoy A.A. A continuum model for finite void growth around spherical inclusion // Int. J. Solids and Structures. - 1993. - V. 30, N. 2. - P. 237-248. DOI
15. Moshev V.V., Kozhevnikova L.L. Structural cell of particulate elastomeric composites under extension and compression // Int. J. Solids Struct. - 2002. - V. 39, N. 2. - P. 449-465. DOI
16. Moshev V.V., Garishin O.C. Physical discretization approach to evaluation of elastic moduli of highly filled granular composites // Int. J. Solids Struct. - 1993. - V. 30, N. 17. - P. 2347-2355. DOI
17. Garisin O.K. Mehaniceskie svojstva i razrusenie dispersno napolnennyh elastomerov. Strukturnoe modelirovanie. - Germany, Saarbrucken: Palmarium Academic Publishing (LAP), 2012.- 292 s.
18. Taskinov M.A., Vil’deman V.E., Mihajlova N.V. Metod posledovatel’nyh priblizenij v stohasticeskoj kraevoj zadace teorii uprugosti strukturno-neodnorodnyh sred // Mehanika kompozicionnyh materialov i konstrukcij. - 2010. - T. 16, No 3. - S. 369-383.
19. Taskinov M.A., Mihajlova N.V. Mnogotocecnye priblizenia vyssih poradkov v kraevoj zadace uprugosti polidispersnyh kompozitov so slucajnoj strukturoj // Vestnik NNGU. - 2011. - No 4-4. - S. 1799-1800.
20. Ivanov S.G., Ivanov D.S. Vlianie ob"emnoj doli volokon na statisticeskie harakteristiki kompozitov slucajnoj struktury // Mehanika kompozicionnyh materialov i konstrukcij. - 2002. - T. 8, No 3. - S. 344-350.
21. Mushelisvili N.I. Nekotorye osnovnye zadaci matematiceskoj teorii uprugosti. - M.: Nauka, 1966. - 707 s.
22. Strukturnye mehanizmy formirovania mehaniceskih svojstv zernistyh polimernyh kompozitov / Pod red. V.V. Moseva - Ekaterinburg, 1997. - 508 s.
23. Svistkov A.L., Garisin O.K., Evlampieva S.E., Lebedev S.N. Iteracionnyj metod rasceta naprazenno-deformirovannogo sostoania v ansamblah vklucenij // Mehanika kompozicionnyh materialov i konstrukcij. - 1999. - T. 5, No 2. - S. 17-28.
24. Evlampieva S.E., Mosev V.V. Novyj metod ocenki effektivnyh svojstv sredy s haoticno raspolozennymi vkluceniami // Deformirovanie i razrusenie strukturno-neodnorodnyh materialov i konstrukcij. - Sverdlovsk: Izd-vo UrO RAN SSSR, 1989. - S. 22-26.
25. Chong J.S., Christiansen E.B., Baer A.D. Rheology of concentrated suspensions // J. Appl. Polym. Sci. - 1971. - V. 15, N. 8. - P. 2007-2021. DOI
Downloads
Published
Issue
Section
License
Copyright (c) 2013 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.