Application of high-order schemes for modeling the process of braking of supersonic flows in rectangular channels
DOI:
https://doi.org/10.7242/1999-6691/2013.6.3.33Keywords:
supersonic flow, braking of supersonic flow, Mach number, high-order approximation, shock waveAbstract
The process of braking of a supersonic viscous gas flow in the rectangular three-dimensional channel with a square cross-section is studied using high-order schemes. Formation of the system of semi-straight and X-shaped shock waves is illustrated in the analysis of supersonic viscous gas flow braking. Flow structure is shown for different values of the Mach number. Some specific methods are presented for integration of gas dynamics equations, which are based on WENO-algorithms and symmetric finite-difference high-order approximation schemes. The proposed technique makes it possible to obtain the characteristics of high-speed supercritical gas flows.
Downloads
References
Lipanov A.M. Teoreticeskaa gidromehanika n’utonovskih sred. - M.: Nauka, 2011. - 551 s.
2. Vedeneev V.V., Guvernyuk S.V., Zubkov A.F. Kolotnikov M.E. Experimental investigation of single-mode panel flutter in supersonic gas flow // Fluid Dyn. - 2010. - V. 45, N. 2. - P. 312-324. DOI
3. Kashkin Yu.F., Konovalov A.E., Krasheninnikov S.Yu., Lyubimov D.A., Pudovikov D.E., Stepanov V.A. Experimental and numerical investigation of separated flows in subsonic diffusers // Fluid Dyn. - 2009. - V. 44, N. 4. - P. 555-565. DOI
4. Lysenko V.I., Semenov N.V., Smorodskij B.V. Ustojcivost’ sverhzvukovogo sleda za ploskoj plastinoj (sravnenie rezul’tatov rasceta i eksperimenta) // MZG. - 2008. - No 6. - S. 36-39.
5. Lysenko V.I. Experimental studies of stability and transition in high-speed wakes // J. Fluid Mech. - 1999. - V. 392. - P. 1-26 DOI
6. Lipatov I.I. Processy tormozenia sverhzvukovyh tecenij v kanalah // Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mehanika. Informatika. - 2008. - T. 8, No 3. - S. 49-56.
7. Gazovaa dinamika. Ser. Aerodinamika bol’sih skorostej / Pod red. G. Emmons. - M., Fizmatlit, 1957.
8. Lipanov A.M., Kisarov U.F., Klucnikov I.G. Cislennyj eksperiment v klassiceskoj gidromehanike turbulentnyh potokov. - Ekaterinburg: UrO RAN, 2001. - 162 s.
9. Jiang G.-S., Shu C.-W. Efficient implementation of weighted ENO schemes // J. Comput. Phys. - 1996. - V. 126, N. 1. - P. 202-228. DOI
10. Kudravcev A.N., Poplavskaa T.V., Hotanovskij D.V. Primenenie shem vysokogo poradka tocnosti pri modelirovanii nestacionarnyh sverhzvukovyh tecenij // Matem. modelirovanie. - 2007. - T. 19, No 7. - S. 39-55.
11. Shu C.-W. High order ENO and WENO schemes for computational fluid dynamics // High-Order Methods for Computational Physics. Lecture Notes in Computational Science and Engineering. - V. 9. - P. 439-582. DOI
12. Gottlieb S., Shu C.-W. Total variation diminishing Runge-Kutta schemes // Math. Comput. - 1998. - V. 67, N. 221. - P. 73-85. DOI
Downloads
Published
Issue
Section
License
Copyright (c) 2013 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.