Effect of macromolecular entanglement on the simple shear flow of viscoelastic fluid
DOI:
https://doi.org/10.7242/1999-6691/2013.6.2.26Keywords:
viscoelastic fluid, simple shear flow, influence of macromolecular entanglementsAbstract
We investigate the stationary shear flow of an incompressible fluid described by the non-linear differential-vector model proposed by Remmelgassom, Harrison and Lill (RHL-model). In the absence of macromolecular entanglements, analytical expressions for orientation tensor components and material functions are derived, and the effect of the parameters of the model on their form is studied. The ranges of model parameters, in which the examined relations show ambiguity, are determined. The influence of macromolecular length limitation on the form of tensor components and material functions is studied numerically.
Downloads
References
Skul’skiy O.I., Slavnov Ye.V., Shakirov N.V. The hysteresis phenomenon in nonisothermal channel flow of a non-newtonian liquid // J. Non-Newton. Fluid. - 1999. - V. 81, N. 1-2. - P. 17-26. DOI
2. Doj M., Edvards S. Dinamiceskaa teoria polimerov. - M.: Mir, 1998. - 440 s.
3. Pysnograj G.V., Pokrovskij V.N., Anovskij U.G. Opredelausee uravnenie nelinejnyh vazkouprugih (polimernyh) sred v nulevom priblizenii po parametram molekularnoj teorii i sledstvia dla sdviga i rastazenia // DAN. - 1994. - T. 339, No 5. - S. 612-615.
4. Kuznecova U.L., Skul’skij O.I. Sdvigovoe tecenie nelinejnoj uprugovazkoj zidkosti // Vestnik Permskogo universiteta. Matematika. Mehanika. Informatika. - 2011. - No 4 (8). - C. 18-26.
5. Skulsky O.I. Numerical solution problems of highly concentrated rod-like macromolecules // Int. J. Polym. Mater. - 1994. - V. 27, N. 1-2. - P. 67-75. DOI
6. Andrejcenko U.A., Brutan M.A., Obrazcov I.F., Anovskij U.G. Spurt-effekt dla vazkouprugih zidkostej v 4-konstantnoj modeli Oldrojda // DAN. - 1997. - T. 352, No 3. - S. 327-330.
7. Aristov S.N., Skul’skij O.I. Tocnoe resenie zadaci tecenia sestikonstantnoj modeli zidkosti Dzeffrisa v ploskom kanale // PMTF. - 2002. - T. 43, No 6. - S. 39-45.
8. Kuznecova U.L., Skul’skij O.I., Pysnograj G.V. Tecenie nelinejnoj uprugovazkoj zidkosti v ploskom kanale pod dejstviem zadannogo perepada davlenia // Vycisl. meh. splos. sred. - 2010. - T. 3, No 2. - S. 55-69. DOI
9. Aristov S.N., Skul’skij O.I. Tocnoe resenie zadaci tecenia rastvora polimera v ploskom kanale // Inzenerno-fiziceskij zurnal. - 2003. - T. 76, No 3. - S. 88-95.
10. Astarita Dz., Marruci Dz. Osnovy gidrodinamiki nen’utonovskih zidkostej. - M.: Mir, 1978. - 309 s.
11. Remmelgas J., Harrison G., Leal L.G. A differential constitutive equation for entangled polymer solutions // J. Non-Newton. Fluid. - 1999. - V. 80, N. 2-3. - P. 115-134. DOI
12. Remmelgas J., Leal L.G. Numerical studies of viscoelastic flows using a model for entangled polymer solutions with a shear stress maximum // J. Non-Newtonian Fluid Mechanics. - 2000. - V. 90, N. 2-3. - P. 187-216. DOI
13. Malkin A.A., IsaevA.I. Reologia: koncepcia, metody, prilozenia. - SPb.: Professia, 2007. -560 s.
14. Noll W. A mathematical theory of the mechanical behavior of continuous media // Arch. Ration. Mech. An. - 1958. - V. 2, N. 1. - P. 197-226. DOI
Downloads
Published
Issue
Section
License
Copyright (c) 2013 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.