Modeling of three-dimensional motion of deformable droplets in stokes regime using boundary element method

Authors

  • Оlga Aleksandrovna Abramova Mavlyutov Institute of Mechanics RAS
  • Yulia Аyratovna Itkulova Mavlyutov Institute of Mechanics RAS
  • Nail Asgatovich Gumerov Insitute for Advanced Computer Studies University of Maryland

DOI:

https://doi.org/10.7242/1999-6691/2013.6.2.25

Keywords:

emulsion channel flow, boundary element method, deformable droplets, Stokes equations

Abstract

The paper presents three-dimensional modeling of the dynamics of droplets under the imposed ambient flow in an unbounded domain and a cylindrical channel at low Reynolds numbers using the boundary element method. The obtained results for test cases are compared with the analytical solution for the flow around a single droplet. The inclination angle of drops and their deformation in a shear flow are studied at various parameters. Computational results are compared with experimental and numerical data found in the literature and with the analytical solution within the framework of small strain theory. The problem statement for the periodic motion of droplets in a channel of arbitrary cross-section is developed. Computations of the dynamics of deformable drops of different volumes and arbitrary distribution in a flow are performed.

Downloads

Download data is not yet available.

References

Pozrikidis C. Boundary integral and singularity methods for linearized viscous flow. - Cambridge University Press: Cambridge, MA, 1992. - 270 r.
2. Kennedy M.R., Pozrikidis C, Skalak R. Motion and deformation of liquid drops, and the rheology of dilute emulsions in simple shear flow // Comput. Fluids. - 1994. - V. 23, N. 2. - P. 251-278. DOI
3. Loewenberg M., Hinch E.J. Numerical simulation of a concentrated emulsion in shear flow // J. Fluid Mech. - 1996. - V. 321. - P. 395-419. DOI
4. Rallison J.M. A numerical study of the deformation and burst of a viscous drop in general shear flows // J. Fluid Mech. - 1981. - V. 109. - P. 465-482. DOI
5. Zinchenko A.Z., Rother M.A., Davis R.H. A novel boundary-integral algorithm for viscous interaction of deformable drops // Phys. Fluids. - 1997. - V. 9, N. 6. - P. 1493-1511. DOI
6. Itkulova U.A. Metod granicnyh elementov v cislennom issledovanii trehmernyh tecenij Stoksa v kanalah proizvol’noj formy // Materialy V Rossijskoj konf. s mezdunarodnym ucastiem <>, Ufa, 2-5 iula 2012 g. - Ufa: Neftegazovoe delo, 2012. - C. 1. - S. 94-97.
7. Pozrikidis C. Creeping flow in two-dimensional channels // J. Fluid Mech. - 1987. - V. 180. - P. 495-514. DOI
8. Boger D.V. Viscoelastic flows through contractions // J. Fluid Mech. - 1987. - V. 19. - R. 157-182. DOI
9. Lubansky A.S., Boger D.V., Servais C. Burbidge A.S. Cooper-White J.J. An approximate solution to flow through a contraction for high Trouton ratio fluids // J. Non-Newton. Fluid. - 2007. - V. 144, N. 2-3. - P. 87-97. DOI
10. Coulliette C., Pozrikidis C. Motion of an array of drops through a cylindrical tube // J. Fluid Mech. - 1998. - V. 358. - P. 1-28. DOI
11. Davis R.H., Zinchenko A.Z. Motion of deformable drops through granular media and other confined geometries // J. Colloid Interf. Sci. - 2009. - V. 334, N. 2. - P. 113-123. DOI
12. Rallison J.M., Acrivos A. A numerical study of the deformation and burst of a viscous drop in an extensional flow // J. Fluid Mech. - 1978. - V. 89, N. 1. - P. 191-200. DOI
13. Zinchenko A.Z., Davis R.H. An efficient algorithm for hydrodynamical interaction of many deformable drops // J. Comput. Phys. - 2000. - V. 157, N. 2. - P. 539-587. DOI
14. Happel’ Dz., Brenner G. Gidrodinamika pri malyh cislah Rejnol’dsa. - M.: Mir, 1976. - 623 s.
15. Rumscheidt F.D., Mason S.G. Particle motions in sheared suspensions. XII. Deformation and burst of fluid drops in shear and hyperbolic flow // J. Coll. Sci. - 1961. - V. 16, N. 3. - P. 238-261. DOI
16. Torza S., Henry C.P., Cox R.G., Mason S.G. Particle motions in sheared suspensions. XXVI. Streamlines in and around liquid drops // J. Colloid Interf. Sci. - 1971. - V. 35, N. 4. - P. 529-543. DOI
17. Cox R.G. The deformation of a drop in a general time-dependent fluid flow // J. Fluid Mech. - 1969. - V. 37, N. 3. - P. 601-623. DOI

Published

2013-07-17

Issue

Section

Articles

How to Cite

Abramova О. A., Itkulova Y. А., & Gumerov, N. A. (2013). Modeling of three-dimensional motion of deformable droplets in stokes regime using boundary element method. Computational Continuum Mechanics, 6(2), 214-223. https://doi.org/10.7242/1999-6691/2013.6.2.25