Numerical simulation of the effect of rotating magnetic field on heat and mass transfer during AHP semiconductor crystal growth
DOI:
https://doi.org/10.7242/1999-6691/2013.6.2.20Keywords:
numerical simulation, directional solidification, mass transfer, rotating magnetic fieldAbstract
Numerical simulations are performed to investigate the effect of an axially symmetric rotating magnetic field on heat and mass transfer during the 2" Ga:Ge semiconductor single crystal growth by the Axial Heating Processing (AHP) technique. The flow pattern and the results of dopant distribution in the melt and its segregation in the crystal are obtained in relation to temperature boundary conditions and intensity of the applied magnetic field. It has been found that the temperature conditions imposed on the submerged heater have significant effect on mass transfer in the melt and, as a consequence, on dopant segregation in the grown crystal. It is shown that the applied low-intensity rotating magnetic field can decrease the radial dopant segregation in the crystal.
Downloads
References
Lan C.W. Recent progress of crystal growth modeling and growth control // Chem. Eng. Sci. - 2004. - V. 59, N. 7. - P. 1437-1457. DOI
2. Ostrogorsky A.G. Single-crystal growth by the submerged heater method // Meas. Sci. Technol. - 1990. - V. 1, N. 5. - P. 463-464. DOI
3. Lubimova T.P., Parsakova A.N. Vlianie vrasatel’nyh vibracij na tecenia i teplomassoobmen pri vyrasivanii kristallov germania vertikal’nym metodom Bridzmena // Vycisl. meh. splos. sred. - 2008. - T. 1, No 1. - S. 57-67. DOI
4. Lyubimova T.P., Croell A., Dold P., Khlybov O.A., Fayzrakhmanova I.S. Time-dependent magnetic field influence on GaAs crystal growth by vertical Brigdman method // J. Crys. Growth. - 2004. - V. 266, N. 1-3. - P. 404-410. DOI
5. Lubimova T.P., Fajzrahmanova I.S. Cislennoe modelirovanie vliania magnitnogo pola na process vyrasivania kristallov vertikal’nym metodom Bridzmena // Vycisl. meh. splos. sred. - 2008. - T. 1, No 3. - S. 85-95. DOI
6. Dold P., Benz K.W. Rotating magnetic fields: Fluid flow and crystal growth applications // Prog. Cryst. Growth Ch. - 1999. - V. 38, N. 1-4. - P. 39-58. DOI
7. Marty Ph., Witkowski L.M., Trombetta P., Tomasino T., Garandet J.P. On the stability of rotating MHD flows // Fluid Mechanics and Its Applications. - 1999. - V. 51. - P. 327-343. DOI
8. Bourago N.G., Fedyushkin A.I. Impurity distribution in submerged heating method with and without rotation // Proc. of Int. Conf. on Computational Heat and Mass Transfer. N. Cyprus, Turkey, 1999. - P. 207-215.
9. Lan C.W., Ting C.C. Numerical investigation on the batch characteristics of liquid encapsulated vertical Bridgman crystal growth // J. Cryst. Growth. - 1995. - V 149, N. 3-4. - P. 175-186. DOI
10. Hlybov O.A. Kombinirovanie simvol’noj algebry i generacii koda dla resenia sloznyh sistem nelinejnyh differencial’nyh uravnenij // Vycisl. meh. splos. sred. - 2008. - T. 1, No 2. - S. 90-99. DOI
11. Lan C.W. Newton’s method for solving heat transfer, fluid flow and interface shapes in a floating molten zone // Int. J. Numer. Meth. Fl. - 1994. - V. 19, N. 1. - P. 41-65. DOI
12. Adornato P.M., Brown R.A. Convection and segregation in directional solidification of dilute and non-dilute binary alloys: Effects of ampoule and furnace design // J. Cryst. Growth. - 1987. - V. 80, N. 1. - P. 155-190. DOI
Downloads
Published
Issue
Section
License
Copyright (c) 2013 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.