On the collision of two elastic solids with plane boundaries

Authors

  • Anatoliy Aleksandrovich Burenin Institute of Machine Science and Metallurgy FEB RAS
  • Olga Vladimirovna Dudko Institute of Automation and Control Processes FEB RAS
  • Dmitriy Andreevich Potianikhin Institute of Automation and Control Processes FEB RAS

DOI:

https://doi.org/10.7242/1999-6691/2013.6.2.19

Keywords:

theory of elasticity, shock wave, Riemann waves, computational experiment

Abstract

The self-similar problem of the collision of two nonlinearly elastic solids with plane nonparallel boundaries is considered. The mechanical properties of colliding solids are characterized by different sets of elastic constants. It is shown that, depending on the friction coefficient, both slip and adhesion between the surfaces in contact may occur. The choice of a unique solution out of mathematically possible solutions is governed by the second law of thermodynamics and the shockwave evolutionary condition. The solution of this problem is carried out as a series of computational experiments involving simultaneous verification of wave pattern selection criteria.

Downloads

Download data is not yet available.

References

Persson K.O. Davlenie v udarnoj volne pri kosom soudarenii. Teoreticeskoe issledovanie // Nestacionarnye processy v deformiruemyh telah / Pod red. A.S. Vol’mira. - M.: Mir, 1976. - S. 132-149.
2. Agapov I.E., Burenin A.A., Rezunov A.V. O soudarenii dvuh nelinejno-uprugih tel s ploskimi granicami // Prikladnye zadaci mehaniki deformiruemyh sred / Pod red. V.P. Masnikova i V.V. Pikula.- Vladivostok: DVO AN SSSR, 1991. - S. 206-215.
3. Dudko O.V., Mancybora A.A. O soudarenii uprugih tel, imeusih ploskie granicy i po-raznomu soprotivlausihsa rastazeniu i szatiu // Problemy mehaniki splosnyh sred i elementov konstrukcij / Pod red. A.A. Burenina i V.P. Masnikova. - Vladivostok: Dal’nauka, 1998. - S. 166-178.
4. Masnikov V.P., Olejnikov A.I. Osnovnye obsie sootnosenia modeli izotropno-uprugoj raznosoprotivlausejsa sredy // DAN. - 1992. - T. 322, No 1. - S. 57-60.
5. Dudko O.V., Potanihin D.A. O kosom udare zestkim telom, imeusim ploskuu granicu, po nelinejnomu uprugomu poluprostranstvu // Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mehanika. Informatika. - 2009. - T. 9, No 4(2). - S. 32-40.
6. Burenin A.A., Lapygin V.V. Ob otrazenii ploskoj prodol’noj udarnoj volny postoannoj intensivnosti ot ploskoj zestkoj granicy nelinejnoj uprugoj sredy // PMTF. - 1985. -No 5. - S. 125-129.
7. Kulikovskij A.G., Svesnikova E.I. Nelinejnye volny v uprugih sredah. - M.: Moskovskij licej, 1998. - 412 s.
8. Kulikovskii A.G., Chugainova A.P., Sveshnikova E.I. On the nonuniqueness of solutions to the nonlinear equations of elasticity theory // J. Eng. Math. - 2006. - V. 55, N. 1-4. - P. 97-110. DOI
9. Dudko O.V., Potanihin D.A. Avtomodel’naa zadaca nelinejnoj dinamiceskoj teorii uprugosti o vzaimodejstvii prodol’noj udarnoj volny s zestkoj pregradoj // Vycisl. meh. splos. sred. - 2008. - T. 1, No 2. - S. 27-37. DOI
10. Bykovcev G.I., Ivlev D.D. Teoria plasticnosti. - Vladivostok: Dal’nauka, 1998. - 528 s.
11. Burenin A.A., Cernysov A.D. Udarnye volny v izotropnom uprugom prostranstve // PMM. - 1978. -T. 42, No 4. - S. 711-717.
12. Lur’e A.I. Nelinejnaa teoria uprugosti. - M.: Nauka, 1980. - 512 s.
13. Potanihin D.A. Algoritm resenia avtomodel’nyh zadac dinamiki udarnogo deformirovania tverdogo tela // Vestnik CGPU im. I.A. Akovleva. Seria: Mehanika predel’nogo sostoania. - 2010. - No 8. - S. 413-423.

Published

2013-07-17

Issue

Section

Articles

How to Cite

Burenin, A. A., Dudko, O. V., & Potianikhin, D. A. (2013). On the collision of two elastic solids with plane boundaries. Computational Continuum Mechanics, 6(2), 157-167. https://doi.org/10.7242/1999-6691/2013.6.2.19