Numerical analysis of the stress state of a spherical contact system with an interlayer of antifriction material
DOI:
https://doi.org/10.7242/1999-6691/2013.6.1.7Keywords:
contact problem, finite element method, friction, spherical contact system, antifriction polymeric interlayerAbstract
The stress-strain state of a spherical contact system with an interlayer of antifriction polymeric material is studied by considering the elastic-plastic contact problem and taking into account contact surface friction. The finite-element method is used to explore the deformation behavior of samples made of three different antifriction polymeric materials. Numerical results are found to be in good quantitative agreement with experimental results. The problem of mechanical interactions in the system with complex geometry is formulated for axisymmetric and three-dimensional cases. By solving the axisymmetric problem, contact characteristics are investigated using different finite element meshes. Mesh parameters are determined for a three-dimensional model. Numerical analysis shows the effect the system geometry on the distribution of contact zones (adhesion, slipping and detachment), and the value and character of contact pressure and tangential stress.
Downloads
References
Rakowski W.A., Zimowski S. Polyesterimide composites as a sensor material for sliding bearings // Compos. Part B Eng. - 2006. - V. 37, N. 2-3. - P. 81-88. DOI
2. Pinchuk L.S., Nikolaev V.I., Tsvetkova E.A., Goldade V.A. Tribology and biophysics of artificial joints. - London, Amsterdam: Elsevier, 2006. - 350 p.
3. Tukasev Z.B., Adilhanova L.A. Issledovanie naprazenno-deformirovannogo sostoania doroznogo pokrytia // Geologia, geografia i global’naa energia. - 2010. - No 2. - C. 163-166.
4. Aleksandrov V.M., Cebakov M.I. Vvedenie v mehaniku kontaktnyh vzaimodejstvij. - Rostov-na-Donu: Izd-vo OOO <>, 2007. - 114 s.
5. Ajzikovic S.M., Aleksandrov V.M., Belokon’ A.V., Krenev L.I., Trubcik I.S. Kontaktnye zadaci teorii uprugosti dla neodnorodnyh sred. - M.: Fizmatlit, 2006. - 237 s.
6. Mehanika kontaktnyh vzaimodejstvij. - M.: Fizmatlit, 2001. - 672 s.
7. Goraceva I.G. Mehanika frikcionnogo vzaimodejstvia. - M.: Nauka, 2001. - 479 s.
8. Nikisin V.S., Sapiro G.S. Prostranstvennye zadaci teorii uprugosti dla mnogoslojnyh sred. - M.: VC AN SSSR, 1970. - 260 s.
9. Aleksandrov V.M., Mhitaran S.M. Kontaktnye zadaci dla tel s tonkimi pokrytiami i proslojkami. - M.: Nauka, 1983. - 488 s.
10. Voronin N.A. Rascet parametrov uprugogo kontakta i effektivnyh harakteristik topokompozita dla slucaa vzaimodejstvia poslednego so sfericeskim indentorom // Trenie i iznos. - 2002. - T. 23, No 6. - S. 583-596.
11. Chidlow S.J., Teodorescu M., Vaughan N.D. Predicting the deflection and sub-surface stress field within two-dimensional inhomogeneously elastic bonded layered solids under pressure // Int. J. Solids Struct. - 2011. - V. 48, N. 22-23. - P. 3243-3256. DOI
12. Sergici A.O., Adams G.G., Muftu S. Adhesion in the contact of a spherical indenter with a layered elastic half-space // J. Mech. Phys. Solids. - 2006. - V. 54, N. 9. - P. 1843-1861. DOI
13. Goryacheva I.G., Torskaya E.V. Modeling of fatigue wear of a two-layered elastic half-space in contact with periodic system of indenters // Wear. - 2010. - V. 268, N. 11-12. - P. 1417-1422. DOI
14. Voronin N.A. Osobennosti i prikladnoj aspekt mehaniki kontaktnogo vzaimodejstvia zestkogo sfericeskogo stampa s upugoplasticnym sloistym poluprostranstvom // Mehanika i fizika processov na poverhnosti i v kontakte tverdyh tel i detalej masin: Mezvuz. sb. nauc. tr. / Pod red. N.B. Demkina. - Tver’: TGTU, 2006. - 232 s.
15. Drozd M.S., Matlin M.M., Sidakin U.I. Inzenernye rascety uprugoplasticeskoj kontaktnoj deformacii. - M.: Masinostroenie, 1986. - 224 s.
16. Aleksandrov V.M., Kadomcev I.G., Caruk L.B. Osesimmetriceskie kontaktnye zadaci dla uprugoplasticeskih tel // Trenie i iznos. - 1984. - T. 5, No 1. - S. 16-26.
17. Peng W., Bhushan B. Three-dimensional contact analysis of layered elastic/plastic solids with rough surfaces // Wear. - 2001. - V. 249, N. 9. - P. 741-760. DOI
18. Rogovoy A., Ivanov B. Displacement formulation of the friction conditions on the contact surface // Comput. Struct. - 1997. - V. 62, N. 1. - P. 133-139. DOI
19. Mechain-Renaud C., Cimetiere A. BEM solution of two dimensional unilateral contact problems with friction by a new approach // Eng. Anal. Bound. Elem. - 2003. - V. 27, N. 3. - P. 269-277. DOI
20. Rodriguez-Tembleque L., Buroni F.C., Abascal R., Saez A. 3D frictional contact of anisotropic solids using BEM // Eur. J. Mech. A-Solid. - 2011. - V. 30, N. 2. - P. 95-104. DOI
21. Khoei A.R., Nikbakht M. An enriched finite element algorithm for numerical computation of contact friction problems // Int. J. Mech. Sci. - 2007. - V. 49. - P. 183-199. DOI
22. Li Y., Liu G.R., Zhang G.Y. An adaptive NS/ES-FEM approach for 2D contact problems using triangular elements // Finite Elem. Anal. Des. - 2011. - V. 47, N. 3. - P. 256-275. DOI
23. Burago N.G., Zuravlev A.B., Nikitin I.S. Analiz naprazennogo sostoania kontaktnoj sistemy <> GTD // Vycisl. meh. splos. sred. - 2011. - T. 4, No 2. - S. 5-16.
24. Gonzalez J.A., Park K.C., Felippa C.A., Abascal R. A formulation based on localized Lagrange multipliers for BEM-FEM coupling in contact problems // Comput. Method. Appl. M. - 2008. - V. 197, N. 6-8. - P. 623-640. DOI
25. Rodriguez-Tembleque L., Abascal R. A FEM-BEM fast methodology for 3D frictional contact problems // Comput. Struct. - 2010. - V. 88, N. 15-16. - P. 924-937. DOI
26. Timosenko S.P., Gud’er Dz. Teoria uprugosti. - M.: Nauka, 1979. - 560 s.
27. Malinin N.N. Prikladnaa teoria plasticnosti i polzucesti. - M.: Masinostroenie, 1975. - 400 s.
28. Adamov A.A. Eksperimental’noe issledovanie mehaniceskogo povedenia kompozitov na osnove ftoroplasta, rabotausih pri bol’sih davleniah v tonkih sloah // Mat. VII Rossijskoj naucno-tehn. konf. <>. - Ekaterinburg: IMAS UrO RAN, 2012. - Elektronnyj opticeskij disk, vkladka <>. - 7 s.
29. Kamenskih A.A., Trufanov N.A. Issledovanie vliania smazocnyh kanavok v antifrikcionnoj proslojke na naprazennoe sostoanie kontaktnogo uzla // Vestnik PNIPU. Prikladnaa matematika i mehanika. - 2012. - No 10. - S. 77-89.
30. Kamenskih A.A., Adamov A.A. Cislennoe issledovanie sfericeskogo kontaktnogo uzla s polimernoj antifrikcionnoj proslojkoj // FiPPTiT. - 2012. - No 3-2 (293). - S. 48-55.
Downloads
Published
Issue
Section
License
Copyright (c) 2013 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.