Stability of structures in non-equilibrium systems

Authors

  • Nikolay Nikolaevich Verichev A.A. Blagonravov Mechanical Engineering Institute RAS

DOI:

https://doi.org/10.7242/1999-6691/2013.6.1.3

Keywords:

convection, structure, stability, oscillator, lattice

Abstract

The application of lattices of lumped dynamical systems (oscillators) as alternative models for the dynamics of convective flows is considered. The stability of one- and two-dimensional main-flow structures and the stability of secondary-flow structures are studied in the context of the dynamics of lattices. Stability conditions are analyzed depending on the intensity of structural turbulence and the geometry of the structured liquid layer.

Downloads

Download data is not yet available.

References

Prigozin I. Neravnovesnaa statisticeskaa mehanika. - M.: Mir, 1964. - 316 s.
2. Rabinovic M.I., Susik M.M. Regularnaa i haoticeskaa dinamika struktur v teceniah zidkosti // UFN. - 1990. - T. 160, No 1. - S. 3-64.
3. Getling A.V. Formirovanie prostranstvennyh struktur konvekcii Relea-Benara // UFN. - 1991. - T. 161, No 9. - C. 1-80.
4. Braun G., Uolken Dz. Zidkie kristally i biologiceskie struktury. - M.: Mir, 1982. - 198 s.
5. Rabinovich M.I., Ezersky A.B., Weidman Patrick D. The dynamics of pattern. - World Scientific, 2000. - 324 p.
6. Gersuni G.Z., Zuhovickij E.M., Nepomnasij A.A. Ustojcivost’ konvektivnyh tecenij. - M.: Nauka, 1989. - 320 s.
7. Getling A.V. Konvekcia Relea-Benara. Struktury i dinamika. - M.: Editorial URSS, 1999. - 248 s.
8. Van-Dajk M. Al’bom tecenij zidkosti i gaza. - M.: Mir, 1986. - 184 s.
9. Kaneko K. Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements // Physica D: Nonlinear Phenomena. - 1990. - V. 41, N. 2. - P. 137-172. DOI
10. Belykh V.N., Belykh I.V., Hasler M. Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems // Phys. Rev. E. - 2000. - V. 62, N. 5. - P. 6332-6345. DOI
11. Belykh V.N., Belykh I.V., Hasler M., Nevidin K.V. Cluster synchronization in three-dimensional lattices of diffusively coupled oscillators // Int. J. Bifurcation Chaos. - 2003. - V. 13. - P. 755-779. DOI
12. Lorenz E.N. Deterministic Nonperiodic Flow // J. Atmos. Sci. - 1963. - V. 20. - P. 130-141. DOI
13. Gledzer E.B., Dolzanskij F.V., Obuhov A.M. Sistemy gidrodinamiceskogo tipa i ih primenenie / Pod red. A.M. Obuhova. - M.: Nauka, 1981. - 366 s.
14. Moon F.C. Chaotic vibrations // Physik in Unserer Zeit. - 1987. - V. 19, N. 3. - P. 94-96.
15. Kuznecov S.P. Dinamiceskij haos. - M.: Fizmatlit, 2001. - 296 s.
16. Verichev N.N, Verichev S.N, Wiercigroch M. C-oscillators and stability of stationary cluster structures in lattices of diffusively coupled oscillators // Chaos Soliton. Fract. - 2009. - V. 42, N. 2. - P. 686-701. DOI
17. Belyh V.N., Vericev N.N. Prostranstvenno-odnorodnye avtovolnovye processy v sistemah s perenosom i diffuziej // Izvestia VUZov. Radiofizika. - 1996. - T. 39, No 5. - S. 588-596.
18. Arnol’d V.I. Novyj obskurantizm i Rossijskoe prosvesenie. - M.: Fazis, 2003. - 60 s.
19. Ahlers G. Experiments with Rayleigh-Benard convection // Dynamics of Spatio-Temporal Structures. Springer Tr. Mod. Phys. - 2006. - V. 207. - P. 67-94. DOI
20. Josic K. Invariant manifolds and synchronization of coupled dynamical systems // Phys. Rev. Lett. - 1998. - V. 80, N. 14. - P. 3053-3056. DOI
21. Vericev N.N. Fizika, susestvovanie i sintez klasternyh struktur svazannyh dinamiceskih sistem // Nelinejnyj mir. - 2009. - T. 7, No 1. - S. 28-46.
22. Gagasev A.I., Tarunin E.L. Intensivnost’ teplovoj konvekcii v ul’ah. // Vycisl. meh. splos. sred. - 2008. - T. 1, No 2. - S. 16-26.

Published

2013-04-27

Issue

Section

Articles

How to Cite

Verichev, N. N. (2013). Stability of structures in non-equilibrium systems. Computational Continuum Mechanics, 6(1), 23-33. https://doi.org/10.7242/1999-6691/2013.6.1.3