Stress concentration coefficients of a woven textile composite layer with local processing defects under pure forming conditions

Authors

  • Denis Vladimirovich Dedkov Perm State National Research Polytechnic University
  • Anatoliy Aleksandrovich Tashkinov Perm State National Research Polytechnic University

DOI:

https://doi.org/10.7242/1999-6691/2013.6.1.13

Keywords:

woven textile composite, polycrystalline matrix, local processing defect, contact with friction, break in a fiber

Abstract

A new model has been developed to simulate a woven textile composite layer with a polycrystalline matrix. Based on the numerical solution of the boundary–value problem by the finite-element method, the values of stress concentration caused by local processing defects (break in a fiber, closed internal pore) in pure forming are obtained. It is shown that application of additional processing operations to fill the formed voids by matrix material can decrease stress concentration and increase the ability of a material to withstand external force loads. The mechanisms responsible for initiation of damages in a polycrystalline matrix are determined.

Downloads

Download data is not yet available.

References

Surovikin V.F., Surovikin U.V., Cehanovic M.S. Novye napravlenia v tehnologii polucenia uglerod-uglerodnyh materialov. Primenenie uglerod-uglerodnyh materialov // Rossijskij himiceskij zurnal. - 2007. - T. LI, No 4. - S. 111-119.
2. Lomov S.V., Ivanov D.S., Verpoest I., Zako M., Kurashiki T., Nakai H., Hirosawa S. Meso-FE modelling of textile composites: Road map, data flow and algorithms // Compos. Sci. Technol. - 2007. - V. 67, N. 9. - P. 1870-1891. DOI
3. Verpoest I., Lomov S.V. Virtual textile composites software WiseTex: Integration with micro-mechanical, permeability and structural analysis // Compos. Sci. Technol. - 2005. - V. 65, N. 15-16 Spec. Iss. - P. 2563-2574. DOI
4. Shokrieh M.M., Lessard L.B. Progressive fatigue damage modeling of composite materials, Part II: Material characterization and model verification // J. Compos. Mater. - 2000. - V. 34, N. 13. - P. 1081-1116.
5. Nishikawa Y., Okubo K., Fujii T., Kawabe K. Fatigue crack constraint in plain-woven CFRP using newly-developed spread tows // Int. J. Fatigue. - 2006. - V. 28, N. 10. - P. 1248-1253. DOI
6. Hufenbach W., Blazejewski W., Kroll L., Bohm R., Gude M., Czulak A. Manufacture and multiaxial test of composite tube specimens with braided glass fibre reinforcement // J. Mater. Process. Tech. - 2005. - V. 162-163. - P. 65-70.
7. Imankulova A.S. Tekstil’nye kompozity. - B.: Izdatel’skij centr <>, 2005. - 152 s.
8. Bergeaud V., Lefebvre V., Rossignon E. SALOME 6. The Open Source integration platform for numerical simulations. - 2012. http://salome-platform.org/user-section/salome-brochure (data obrasenia: 11.02.2013).
9. Abbas M. Discrete formulation of the contact-friction. - 2011. - 55 p. (URL: http://www.code-aster.org/V2/doc/v10/en/man_r/r5/r5.03.50.pdf)
10. Tarnopol’skij U.M., Roze A.V., Zigun I.G., Gunaev G.M. Konstrukcionnye osobennosti materialov, armirovannyh vysokomodul’nymi voloknami // Mehanika polimerov. - 1971. - No 4. - S. 676-685.
11. Matveenko V.P., Fedorov A.U. Optimizacia geometrii sostavnyh uprugih tel kak osnova soversenstvovania metodik ispytanij na procnost’ kleevyh soedinenij // Vycisl. meh. splos. sred. - 2011. - T. 4, No 4. - S. 63-70.

Published

2013-04-27

Issue

Section

Articles

How to Cite

Dedkov, D. V., & Tashkinov, A. A. (2013). Stress concentration coefficients of a woven textile composite layer with local processing defects under pure forming conditions. Computational Continuum Mechanics, 6(1), 103-109. https://doi.org/10.7242/1999-6691/2013.6.1.13