Two-way coupling simulation of interaction between a supersonic flow and a non-rigid plate. Сomparison of numerical and experimental results

Authors

  • Sergey Petrovich Kopysov Institute of Mechanics UB RAS
  • Leonid Evgenievich Tonkov Institute of Mechanics UB RAS
  • Alyena Alekseevna Chernova Institute of Mechanics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2013.6.1.10

Keywords:

fluid-structure interaction (FSI), two-way coupling, shock tube, numerical modeling

Abstract

This paper presents algorithms for solving the two-way coupled problem of interaction between a supersonic flow and a non-rigid plate. Several algorithms implementing weak and strong coupling are compared with the available experimental data. A number of different factors affecting the gas flow and the plate shape in a shock tube are analyzed.

Downloads

Download data is not yet available.

References

Amarantov G.N., Egorov M.U., Egorov S.M., Egorov D.M., Nekrasov V.I. Cislennoe modelirovanie vnutrikamernyh processov pri vyhode na rezim raboty raketnogo dvigatela tverdogo topliva // Vycisl. meh. splos. sred. - 2010. - T. 3, No 4. - S. 5-17.
2. Ganeeva M.S., Moiseeva V.E., Skvorcova Z.V. Nelinejnyj izgib i ustojcivost’ ellipsoidal’noj obolocki, vzaimodejstvuusej s zidkost’u // Vycisl. meh. splos. sred. - 2011. - T. 4, No 3. - S. 32-40.
3. Farhat C., Lesoinne M. Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems // Comput. Method. Appl. M. - 2000. - V. 182, N. 3-4. - P. 499-515. DOI
4. Giordano J., Jourdan G., Burtschell Y., Medale M., Zeitoun D.E., Houas L. Shock wave impacts on deforming panel, an application of fluid-structure interaction // Shock Waves. - 2005. - V. 14, N. 1-2. - P. 103-110. DOI
5. Jourdan G., Houas L., Schwaederle L., Layes G., Carrey R., Diaz F. A new variable inclination shock tube for multiple investigations // Shock Waves. - 2004. - V. 13, N. 6. - P. 501-504. DOI
6. Tonkov L.E. Verifikacia biblioteki prikladnyh programm OpenFOAM na zadace transzvukovogo vnutrennego tecenia v diffuzore // Aktual’nye problemy matematiki, mehaniki, informatiki: Cb. statej. - Ekaterinburg: IMM UrO RAN, 2009. - S. 89-94.
7. Kopysov S.P., Novikov A.K., Ponomarev A.B., Ryckov V.N., Sagdeeva U.A. Programmnaa sreda rascetnyh setocnyh modelej dla parallel’nyh vycislenij // Programmnye produkty i sistemy. - 2008. - No 2. - S. 87-89.
8. Suhoroslov O.V. Promezutocnoe programmnoe obespecenie Ice // Trudy ISA RAN. - 2008. - T. 32. - C. 33-67.
9. Perng Y.Y. Modeling fluid structure interactions http://www.ansys.com/staticassets/ansys/conference/confidence/houston/downloads/modeling-fluid-structure-interactions.pdf (data obrasenia: 04.12.2012).
10. Van Leer B. Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow // J. Comput. Phys. - 1977. - V. 23, N. 3. - P. 263-275. DOI
11. ANSYS(R) Academic Research, Release 12.1, Help system. - ANSYS Inc.
12. Farhat C., Lesoinne M., Le Tallec P. Load and motion transfer algorithms for fluid / structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity // Comput. Method. Appl. M. - 1998. - V. 157, N. 1-2. - P. 95-114. DOI
13. De Boer A., van Zuijlen A.H., Bijl H. Comparison of conservative and consistent approaches for the coupling of non-matching meshes // Comput. Method. Appl. M. - 2008. - V. 197, N. 49-50. - P. 4284-4297. DOI
14. Degand C., Farhat C. A three-dimensional torsional spring analogy method for unstructured dynamic meshes // Computers & Structures. - 2002. - V. 80, N. 3-4. - P. 305-316. DOI

Published

2013-04-27

Issue

Section

Articles

How to Cite

Kopysov, S. P., Tonkov, L. E., & Chernova, A. A. (2013). Two-way coupling simulation of interaction between a supersonic flow and a non-rigid plate. Сomparison of numerical and experimental results. Computational Continuum Mechanics, 6(1), 78-85. https://doi.org/10.7242/1999-6691/2013.6.1.10