Experimental benchmarking of CFD codes used in simulations of heat exchangers for nuclear-power applications
DOI:
https://doi.org/10.7242/1999-6691/2012.5.4.55Keywords:
turbulent convection, convective heat exchange, CFD packages, benchmarksAbstract
This study is aimed to provide benchmark experimental data for CFD codes used in simulations of heat-exchangers for nuclear-power applications. The experimental results obtained in studying turbulent Raleigh–Benard convection in a rectangular tank with dimensions(where one of the horizontal dimensions) are proposed as a benchmark. Experiments were carried out for a fixed Raleigh numberand different values of aspect ratio Гand 1. It has been found that, for these aspect ratios, the large-scale circulation is characterized by different regimes. Numerical simulations made by ANSYS CFX for two cases (Г,and Г,) provide relevant results not only for the mean flow but also for the spatial and temporal distribution of turbulent fluctuations. Long-time simulations are able to reproduce the dynamics of large-scale circulation, yet they require a remarkable increase of computation time for accurate comparison of flow characteristics.
Downloads
References
Betts P.L., Bokhari I.H. Experiments on turbulent natural convection in an enclosed tall cavity // Int. J. Heat Fluid Fl. - 2000. - V. 21, N. 6. - P. 675-683. DOI
2. Gersuni G.Z., Zuhovickij E.M., Nepomnasij A.A. Ustojcivost’ konvektivnyh tecenij. - M.: Nauka, 1989. - 320 s.
3. Zimin V.D., Frik P.G. Turbulentnaa konvekcia. - M.: Nauka, 1988. - 178 s.
4. Vasil’ev A.U., Frik P.G. Inversii krupnomasstabnoj cirkulacii pri turbulentnoj konvekcii v pramougol’nyh oblastah // Pis’ma v ZETF - 2011. -T. 93, No 6. - C. 363-367.
5. De Vahl Davis G. Natural convection of air in a square cavity: a bench mark numerical solution // Int. J. Numer. Meth. Fl. - 1983. - V. 3, N. 3. - P. 249-264. DOI
6. Hortmann M., Peric M., Scheurer G. Finite volume multigrid prediction of laminar natural convection: Bench-mark solutions // Int. J. Numer. Meth. Fl. - 1990. - V. 11, N. 2. - P. 189-207. DOI
7. Christon M.A., Gresho P.M., Sutton S.B. Computational predictability of time-dependant natural convection flows in enclosures (including a benchmark solution) // Int. J. Numer. Meth. Fl. - 2002. - V. 40, N. 8. - P. 953-980. DOI
8. Tian Y.S., Karayiannis T.G. Low turbulence natural convection in an air filled square cavity: Part I: the thermal and fluid flow fields // Int. J. Heat Mass Tran. - 2000. - V. 43, N. 6. - P. 849-866. DOI
9. Tian Y.S., Karayiannis T.G. Low turbulence natural convection in an air filled square cavity: Part II: the turbulence quantities // Int. J. Heat Mass Tran. - 2000. - V. 43, N. 6. - P. 867-884. DOI
10. Ozoe, H., Yamamoto, K., Churchill, S.W., Sayama, H. Three-dimensional, numerical analysis of laminar natural convection in a confined fluid heated from below // J. Heat Trans. - T. ASME. - 1976. V. 98, N. 2. - P.202-207.
11. Hernandez R., Frederick R.L. Spatial and thermal features of three dimensional Rayleigh-Benard convection // Int. J. Heat Mass Tran. - 1994. - V. 37, N. 3. - P. 411-424. DOI
12. Pallares J., Cuesta I., Grau F.X., Giralt F. Natural convection in a cubical cavity heated from below at low Rayleigh numbers // Int. J. Heat Mass Tran. - 1996. - V. 39, N. 15. - P. 3233-3247. DOI
13. Pallares J., Grau F.X., Giralt F. Flow transitions in laminar Rayleigh-Benard convection in a cubical cavity at moderate Rayleigh numbers // Int. J. Heat Mass Tran. - 1999. - V. 42, N. 4. - P. 753-769. DOI
14. Pallares J., Arroyo M.P., Grau F.X., Giralt F. Experimental laminar Rayleigh-Benard convection in a cubical cavity at moderate Rayleigh and Prandtl numbers // Exp. Fluids. - 2001. - V. 31, N. 2. - P. 208-218. DOI
15. Puigjaner D., Herrero J., Giralt F., Simo C. Stability analysis of the flow in a cubical cavity heated from below // Phys. Fluids. - 2004. - V. 16, N. 10. - P. 3639-3655. DOI
16. Puigjaner D., Herrero J., Giralt F., Simo C. Bifurcation analysis of multiple steady flow patterns for Rayleigh-Benard convection in a cubical cavity at // Phys. Rev. E. - 2006. - V. 73, N. 4. - 046304. DOI
17. Puigjaner D., Herrero J., Simo C., Giralt F. Bifurcation analysis of steady Rayleigh-Benard convection in a cubical cavity with conducting sidewalls // J. Fluid Mech. - 2008. - V. 598. - P. 393-427. DOI
18. Busse F., Lubimov D.V., Lubimova T.P., Sedel’nikov G.A. Trehmernye rezimy konvekcii v kubiceskoj polosti // MZG. - 2008. - No 1. - S. 3-11.
19. Puigjaner D., Herrero J., Simo C., Giralt F. From steady solutions to chaotic flows in a Rayleigh-Benard problem at moderate Rayleigh numbers // Physica D. - 2011. - V. 240, N. 11. - P. 920-934. DOI
20. Sreenivasan K.R., Bershadskii A., Niemela J.J. Mean wind and its reversal in thermal convection // Phys. Rev. E. - 2002. - V. 65, N. 5. - 056306. DOI
21. Brown E., Ahlers G. Rotations and cessations of the large-scale circulation in turbulent Rayleigh- Benard convection // J. Fluid Mech. - 2006. - V. 568. - P. 351-386. DOI
22. Xi H.-D., Xia K.-Q. Azimuthal motion, reorientation, cessation, and reversal of the large-scale circulation in turbulent thermal convection: A comparative study in aspect ratio one and one-half geometries // Phys. Rev. E. - 2008. - V. 78, N. 3. - 036326. DOI
23. Sugiyama K., Ni R., Stevens R.J.A.M., Chan T.S. et al. Flow reversals in thermally driven turbulence // Phys. Rev. Lett. - 2010. - V. 105, N. 3. - 034503. DOI
24. Lubimov D.V., Putin G.F., Cernatynskij V.I. O konvektivnyh dvizeniah v acejke Hele-Sou // DAN SSSR. - 1977. - T. 235, No 3. - S. 554-556.
25. Barannikov V.A., Frik P.G., Sajdurov V.G. Spektral’nye harakteristiki dvumernoj turbulentnoj konvekcii v vertikal’noj seli // PMTF. - 1988. - No 2. - S. 42-46.
26. Aristov S.N., Frik P.G. Krupnomasstabnaa turbulentnost’ v konvekcii Relea-Benara // Izvestia AN SSSR. MZG. - 1989. - No 5. - C. 43-48.
27. Celani A., Matsumoto T., Mazzino A., Vergassola M. Scaling and universality in turbulent convection // Phys. Rev. Lett. - 2002. - V. 88, N. 5. - 054503. DOI
28. Seychelles F., Ingremeau F., Pradere C., Kellay H. From intermittent to nonintermittent behavior in two dimensional thermal convection in a soap bubble // Phys. Rev. Lett. - 2010. - V. 105, N. 26. - 264502. DOI
29. Bogatyrev G.P., Gilev V.G., Zimin V.D. Prostranstvenno-vremennye spektry stohasticeskih kolebanij v gidrodinamiceskih sistemah // Pis’ma v ZETF. - 1980. - T. 32, No 3. - S. 229-232.
30. Barannikov V.A., Bogatyrev G.P., Zimin V.D., i dr. Zakonomernosti ceredovania pikov v spektrah stohasticeskih kolebanij gidrodinamiceskih sistem: Prepr. / In-t mehaniki splosnyh sred. - Sverdlovsk, UNC AN SSSR, 1982. - 32 s.
31. Smagorinsky J. General Circulation Experiments with the Primitive Equations. I. The basic experiment // Mon. Wea. Rev. - 1963. - V. 91, N.3. - P. 99-164. DOI
Downloads
Published
Issue
Section
License
Copyright (c) 2012 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.