Numerical solution of generalized dynamic axisymmetric problems for elastoplastic shells of revolution under large deformations
DOI:
https://doi.org/10.7242/1999-6691/2012.5.4.50Keywords:
elastoplasticity, large deformation, axisymmetric shells, torsion, numerical modeling, variational difference methodAbstract
We present a technique for solving numerically the nonlinear nonstationary problems of axisymmetric elastoplastic deformation of shells of revolution taking into consideration torsion under the prescribed kinematics and loads. The method is based on the geometrically nonlinear Timoshenko theory of shells and the plasticity theory with isotropic hardening. A variational difference method in combination with a scheme for explicit time integration of the equations of motion is used for solving the problem of interest. Stability estimates and a regularization technique for difference schemes that can increase the integration time step are given. The efficiency of the proposed method is verified by studying the stability of the elastoplastic deformation of a cylindrical metal shell under monotonic tension and torsion.
Downloads
References
Korobejnikov S.N. Cislennoe resenie uravnenij s osobennostami deformirovania uprugoplasticeskih obolocek vrasenia // Vycisl. tehnologii. - 2001. - T. 6, No 5. - S. 39-59.
2. Bazenov V.G., Baranova M.S., Kibec A.I., Lomunov V.K., Pavlenkova E.V. Vypucivanie uprugoplasticeskih cilindriceskih i koniceskih obolocek pri osevom udarnom nagruzenii // Ucen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki. - 2010. - T. 152, No 4. - S. 86-105.
3. Kolpak E.P. Ustojcivost’ bezmomentnyh obolocek pri bol’sih deformaciah. - SPb.: Izd-vo SPbGU, 2000. - 248 s.
4. Bazenov V.G., Lomunov V.K. Ustojcivost’ i zakriticeskoe sostoanie obolocek vrasenia pri osevom udare // Prikladnaa mehanika. - 1986. - T. 22, No 9. - S. 28-33.
5. Abrosimov N.A., Bazenov V.G. Nelinejnye zadaci dinamiki kompozitnyh konstrukcij. - N. Novgorod: Izd-vo NNGU, 2002. - 400 s.
6. Bazenov V.G., Cekmarev D.T. Cislennye metody resenia zadac nestacionarnoj dinamiki tonkostennyh konstrukcij // MTT. - 2001. - No 5. - C. 156-173.
7. Pozdeev A.A., Trusov P.V., Nasin U.I. Bol’sie uprugoplasticeskie deformacii: teoria, algoritmy, prilozenia. - M.: Nauka, 1986. - 232 s.
8. Annin B.D., Korobejnikov S.N. Dopustimye formy uprugih zakonov deformirovania v opredelausih sootnoseniah uprugo-plasticnosti // Sib. zurn. industr. matem. - 1998. - T. 1, No 1. - S. 21-34.
9. Bazenov V.G., Cekmarev D.T. Resenie zadac nestacionarnoj dinamiki plastin i obolocek variacionno-raznostnym metodom: Uceb. posobie. - N. Novgorod: Izd-vo NNGU, 2000. - 107 s.
10. Bazenov V.G., Lomunov V.K. Eksperimental’no-teoreticeskoe issledovanie processa obrazovania sejki pri rastazenii stal’nogo trubcatogo obrazca do razryva // Problemy procnosti i plasticnosti. Mezvuz. sb. - N. Novgorod: Izd-vo NNGU, 2001. - S. 35-41.
11. Kacanov L.M. Osnovy teorii plasticnosti. - M.: Nauka, 1969. - 420 s.
Downloads
Published
Issue
Section
License
Copyright (c) 2012 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.