Local energy fluxes of forced vibrations of a thin elastic band

Authors

  • Daniil Petrovich Kouzov Institute for Problems in Mechanical Engineering
  • Natalia Aleksandrovna Mirolubova Institute for Problems in Mechanical Engineering

DOI:

https://doi.org/10.7242/1999-6691/2012.5.4.47

Keywords:

thin elastic plate, elastic band, longitudinal and shear vibrations, energy-flux vector

Abstract

The forced vibrations of a thin elastic band excited by a point source have been considered. The vibration processes are described by the equations of thin plate theory. An integral representation of the displacement field is derived. A normal wave expansion of the displacement field is carried out. It is shown that the inverse wave exerts a strong influence on the character of the energy flux behavior.

Downloads

Download data is not yet available.

References

Kim J.-D., Hong S.-Y., Kwon H.-W., Song J.-H. Energy flow model considering near field energy for predictions of acoustic energy in low damping medium // Sound Vib. - 2011. - V. 330, N. 2. - P. 271-286. DOI
2. Guasch O., Aragones A. Finding the dominant energy transmission paths in statistical energy analysis // Sound Vib. - 2011. - V. 330, N. 10. - P. 2325-2338. DOI
3. Wu D., Qiu Zhi P. Comparison of two non-probabilistic approaches for the energy flow uncertainty in structural vibrating system // Sound Vib. - 2011. - V. 330, N. 11. - P. 2520-2535. DOI
4. Guyomar D., Lallart M., Petit L., Wang X.-J. Impact localization and energy quantification based on the power flow: A low-power requirement approach // Sound Vib. - 2011. - V. 330, N.13. - P. 3270-3283. DOI
5. Zhang B., Xiong W., Yu M., Lan C.Q., Li L. Study of energy distribution of guided waves in multilayered media // J. Acoust. Soc. Am. - 1998. - V. 103, N. 1. - P. 125-135. DOI
6. Meitzler A.H. Backward-wave transmission of stress pulses in elastic cylinders and plates // J. Acoust. Soc. Am. - 1965. - V. 38, N. 5. - P. 835-842. DOI
7. Viktorov I.A. Fiziceskie osnovy primenenia ul’trazvukovyh voln Relea i Lemba v tehnike. - M.: Nauka, 1966. - 168 s.
8. Merkulov L.G., Rohlin S.I. Difrakcia voln Lemba v plastine na polubeskonecnom razreze // Defektoskopia. - 1969. - T. 4. - S. 24-36.
9. Burlij P.V., Kucerov I.A. Obratnye uprugie volny v plastinah // Pis’ma v ZETF. - 1977. - T. 26, No 9. - S. 644-647.
10. Burlij P.V., Il’in P.P., Kucerov I.A. Obratnye uprugie volny v izotropnyh plastinah // ZTF. - 1981. - T. 51, No 10. - S. 2196-2198.
11. Burlij P.V., Il’in P.P., Kucerov I.A. O vozmoznosti susestvovania poperecnyh obratnyh voln v plastinah // Pis’ma v ZTF. - 1982. - T. 8, No 9. - S. 568-571.
12. Abramova O.P., Storozev V.I., Spak V.A. Dispersia normal’nyh voln v ortotropnom sloe s zakreplennymi granicami // Akusticeskij zurnal. - 1996. - T. 42, No 1. - S. 5-9.
13. Burlij P.V., Il’in P.P., Kucerov I.A. Obratnye poperecnye akusticeskie volny v plastinah kubiceskih kristallov // Akusticeskij zurnal. - 1997. - T. 43, No 3. - S. 310-314.
14. Toda K., Motegi K. Propagation characteristics of leaky Lamb waves in a liquid-loaded double-layered substrate consisting of a thin piezoelectric ceramic plate and thin glass plate // J. Acoust. Soc. Am. - 1999. - V. 105, N. 6. - P. 3290-3294. DOI
15. Kucerov I.A., Malarenko E.V. Potoki energii obratnyh i pramyh normal’nyh poperecnyh akusticeskih voln v p’ezoelektriceskih plastinah // Akusticeskij zurnal. - 1998. - T. 44, No 4. S. 492-497.
16. Veshev V.A., Kouzov D.P., Mirolybova N.A. On opposite directions of the energy’s flux of normal wave propagation in thin-wall waveguide // Analiz i sintez nelinejnyh mehaniceskih kolebatel’nyh sistem: Tr. XXIV letnej skoly-seminara. - SPb: Izd-vo IPMas RAN, 1997. - S. 71-78.
17. Vesev V.A., Kouzov D.P., Mirolubova N.A. Potoki energii i dispersia normal’nyh voln izgibnogo tipa v balke krestoobraznogo profila // Akusticeskij zurnal. - 1999. - T. 45, No 3. - S. 331-336.

Published

2012-12-25

Issue

Section

Articles

How to Cite

Kouzov, D. P., & Mirolubova, N. A. (2012). Local energy fluxes of forced vibrations of a thin elastic band. Computational Continuum Mechanics, 5(4), 397-404. https://doi.org/10.7242/1999-6691/2012.5.4.47