Model of a non-isothermal stationary magma flow in a volcanic conduit taking into account slip boundary conditions at the conduit wall
DOI:
https://doi.org/10.7242/1999-6691/2012.5.3.42Keywords:
magma, extrusion eruption, axisymmetrical model, non-Newtonian viscosity, wall slip, finite element methodAbstract
The model of a non-isothermal magma flow in a circular cylindrical volcanic conduit is proposed. It is assumed that magma viscosity depends on temperature, deformation rate and concentration of dissolved gases, which in turn depends on pressure. The possibility of the slip of magma along the conduit walls in accordance with the experimentally determined law is taken into account. An algorithm and a computational procedure for simulation of the non-isothermal stationary flow of nonlinear viscous incompressible magma in the conduit are developed. It is shown that viscous dissipation and wall slip lead to much higher discharge rates for fixed magma chamber pressure.
Downloads
References
Barmin A.A., Mel’nik O.E. Gidrodinamika vulkaniceskih izverzenij // Uspehi mehaniki. - 2002. - T. 1, No 1. - S. 32-60.
Melnik O., Stefen R., Sparks R., Costa A., Barmin A.A. Volcanic eruptions: cyclicity during lava dome growth // Encyclopedia of Complexity and Systems Science. - 2009. - Part 22. - P. 9763-9784. DOI
Barmin A.A., Vedeneeva E.A., Mel’nik O.E. Effect of viscous dissipation on nonisothermal high-viscosity magma flow in a volcanic conduit // Fluid Dyn. - 2004. - V. 39, N. 6. - P. 863-873. DOI
Melnik O., Sparks R.S.J. Controls on conduit magma flow dynamics during lava dome building eruptions // J. Geophys. Res. - 2005. - V. 110. - b02209. DOI
Gonnermann H.M., Manga M. The fluid mechanics inside a volcano // Annu. Rev. Fluid Mech. - 2007. - V. 39. - P. 321-356. DOI
Caricchi L., Burlini L., Ulmer P., Gerya T., Vassalli M., Papale P. Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics // Earth Planet. Sc. Lett. - 2007. - V 264, N. 3-4. - P. 402-419. DOI
Pal R. Steady laminar flow of non-Newtonian bubbly suspensions in pipes // J. Non-Newton. Fluid. -2007. - V. 147, N. 1-2. - P. 129-137. DOI
Pal R. Rheological constitutive equation for bubbly suspensions // Ind. Eng. Chem. Res. - 2004. - V. 43. - P. 5372-5379. DOI
Neuberg J.W., Tuffen H., Collier L., Green D., Powell T., Dingwell D. The trigger mechanism of low-frequency earthquakes on Montserrat // J. Volcanol. Geoth. Res. - 2006. - V. 153, N. 1-2. - P. 37-50. DOI
Downloads
Published
Issue
Section
License
Copyright (c) 2012 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.