Laminar and turbulent conjugate regimes of natural convection in a square enclosure

Authors

  • Мikhael Аlexandrovich Sheremet Tomsk State University

DOI:

https://doi.org/10.7242/1999-6691/2012.5.3.39

Keywords:

conjugate heat transfer, natural convection, turbulence, finite volume method, non-uniform structured mesh, SIMPLER algorithm

Abstract

Mathematical simulation of laminar and turbulent regimes of unsteady conjugate natural convection in a square enclosure with heatconducting walls of finite thickness has been carried out in terms of dimensionless variables such as velocity, pressure, temperature. Results are presented in the form of contour maps for streamlines, isotherms and turbulent viscosity. The average Nusselt number at a solid-fluid interface is obtained as a function of time, Rayleigh number and thermal conductivity ratio.

Downloads

Download data is not yet available.

References

Kim D.M., Viskanta R. Study of the effects of wall conductance on natural convection in differently oriented square cavities // J. Fluid Mech. - 1984. - V. 144. - P. 153-176. DOI
Lykov A.V., Aleksasenko A.A., Aleksasenko V.A. Soprazennye zadaci konvektivnogo teploobmena: uceb. posobie. - Minsk: Izd-vo BGU, 1971. - 346 c.
Petuhov B.S., Genin L.G., Kovalev S.A., Solov’ev S.L. Teploobmen v adernyh energeticeskih ustanovkah: uceb. posobie. - M.: Izd-vo MEI, 2003. - 548 s.
Pavlukevic N.V. Soprazennye zadaci teploobmena // Teplovye processy v tehnike. - 2011. - No 4. - S. 149-158.
Kuznetsov G.V., Sheremet M.A. Conjugate heat transfer in an enclosure under the condition of internal mass transfer and in the presence of the local heat source // Int. J. Heat Mass Tran. - 2009. - V. 52, N. 1-2. - P. 1-8. DOI
Kuznecov G.V., Seremet M.A. Dvumernaa zadaca estestvennoj konvekcii v pramougol’noj oblasti pri lokal’nom nagreve i teploprovodnyh granicah konecnoj tolsiny // MZG. - 2006. - No 6. - S. 29-39.
Liaqat A., Baytas A.C. Conjugate natural convection in a square enclosure containing volumetric sources // Int. J. Heat Mass Tran. - 2001. - V. 44, N. 17. - P. 3273-3280. DOI
Liaqat A., Baytas A.C. Numerical comparison of conjugate and non-conjugate natural convection for internally heated semi-circular pools // Int. J. Heat Fluid Fl. - 2001. - V. 22, N. 6. - P. 650-656. DOI
Seremet M.A. Soprazennye zadaci estestvennoj konvekcii. Zamknutye oblasti s lokal’nymi istocnikami teplovydelenia. - Berlin: LAP LAMBERT Academic Publishing, 2011. - 176 c.
Sheremet M.A. The influence of cross effects on the characteristics of heat and mass transfer in the conditions of conjugate natural convection // J. Eng. Thermophys. - 2010. - V. 19, N. 3. - P. 119-127. DOI
Kuznecov G.V., Seremet M.A. K voprosu ob effektivnom regulirovanii teploperenosa i gidrodinamiki v zamknutyh oblastah za scet optimal’nogo vybora materialov ograzdausih stenok i vnesnej teplovoj nagruzki // Mikroelektronika. - 2011. - T. 40, No 5. - S. 351-358.
Jaluria Y. Design and optimization of thermal systems. - Boca Raton, Florida: CRC Press, 2008. - 752 p.
Seremet M.A., Nikiforov A.A., Volokitin O.G. Kompleks dla polucenia silikatnogo rasplava iz zoloothodov // Steklo i keramika. - 2007. - No 9. - S. 23-26.
Xaman J., Mejia G., Alvarez G., Chavez Y. Analysis on the heat transfer in a square cavity with a semitransparent wall: Effect of the roof materials // Int. J. Therm. Sci. - 2010. - V. 49, N. 10. - P. 1920-1932. DOI
Oztop H.F., Varol Y., Koca A. Natural convection in a vertically divided square enclosure by a solid partition into air and water regions // Int. J. Heat Mass Tran. - 2009. - V. 52, N. 25-26. - P. 5909-5921. DOI
Kahveci K. A differential quadrature solution of natural convection in an enclosure with a finite-thickness partition // Numer. Heat Tr. A-Appl. - 2007. - V. 51, N. 10. - P. 979-1002. DOI
Nouanegue H.F., Muftuoglu A., Bilgen E. Heat transfer by natural convection, conduction and radiation in an inclined square enclosure bounded with a solid wall // Int. J. Therm. Sci. - 2009. - V. 48, N. 5. - P. 871-880. DOI
Kaminski D.A., Prakash C. Conjugate natural convection in a square enclosure: effect of conduction in one of the vertical walls // Int. J. Heat Mass Tran. - 1986. - V. 29, N. 12. - P. 1979-1988. DOI
Kuznetsov G.V., Sheremet M.A. Numerical simulation of turbulent natural convection in a rectangular enclosure having finite thickness walls // Int. J. Heat Mass Tran. - 2010. - V. 53, N. 1-3. - P. 163-177. DOI
Seremet M.A. Matematiceskoe modelirovanie turbulentnyh rezimov soprazennoj termogravitacionnoj konvekcii v zamknutoj oblasti s lokal’nym istocnikom tepla // T i A. - 2011. - T. 18, No 1. - S. 117-131.
Lojcanskij L.G. Mehanika zidkosti i gaza. - M.: Drofa, 2003. - 840 s.
Launder B.E., Spalding D.B. The numerical computation of turbulent flows // Comput. Method. Appl. M. - 1974. - V. 3, N. 2. - P. 269-289. DOI
Lykov A.V. Teoria teploprovodnosti: uceb. posobie. - M.: Vyssaa skola, 1967. - 600 s.
Belov I.A., Isaev S.A., Korobkov V.A. Zadaci i metody rasceta otryvnyh tecenij neszimaemoj zidkosti. - L.: Sudostroenie, 1989. - 256 s.
Belov I.A., Isaev S.A. Modelirovanie turbulentnyh tecenij: uceb. posobie. - SPb.: Izd-vo BGTU, 2001. - 108 s.
Patankar S. Cislennye metody resenia zadac teploobmena i dinamiki zidkosti. - M.: Energoatomizdat, 1984. - 152 s.
Versteeg H.K., Malalasekera W. An introduction to computational fluid dynamics. The finite volume method. - New York: Wiley & Sons, 1995. - 257 p.
Ferziger J.H., Peric M. Computational methods for fluid dynamics. - Berlin: Springer Verlag, 2002. - 423 p.
Il’in V.P. Metody nepolnoj faktorizacii dla resenia algebraiceskih sistem. - M.: Fizmatlit, 1995. - 288 s.
Dixit H.N., Babu V. Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method // Int. J. Heat Mass Tran. - 2006. - V. 49, N. 3-4. - P. 727-739. DOI
Ridouane E.H., Campo A., Hasnaoui M. Turbulent natural convection in an air-filled isosceles triangular enclosure // Int. J. Heat Fluid Fl. - 2006. - V. 27, N. 3. - P. 476-489. DOI
Henkes R.A.W.M., Hoogendoorn C.J. Comparison exercise for computations of turbulent natural convection in enclosures // Numer. Heat Tr. B-Fund. - 1995. - V. 28, N. 1. - P. 59-78. DOI
Vahl Davis G. Natural convection of air in a square cavity: a bench mark numerical solution // Int. J. Numer. Meth. Fl. - 1983. - V. 3, N. 3. - P. 249-264. DOI
Markatos N.C., Pericleous K.A. Laminar and turbulent natural convection in an enclosed cavity // Int. J. Heat Mass Tran. - 1984. - V. 27, N. 5. - P. 755-772. DOI
Barakos G., Mitsoulis E., Assimacopoulos D. Natural convection flow in a square cavity revisited: Laminar and turbulent models with wall functions // Int. J. for Numer. Meth. Fl. - 1994. - V. 18, N. 7. - P. 695-719. DOI
Elsherbiny S.M., Raithby G.D., Hollands K.G.T. Heat transfer by natural convection across vertical and inclined air layers // J. Heat Trans.-T. ASME. - 1982. - V. 104, N. 1. - P. 96-102. DOI
Xaman J., Alvarez G., Hinojosa J., Flores J. Conjugate turbulent heat transfer in a square cavity with a solar control coating deposited to a vertical semitransparent wall // Int. J. Heat Fluid Fl. - 2009. - V. 30, N. 2. - P. 237-248. DOI
Kuznecov G.V., Seremet M.A. O vozmoznosti regulirovania teplovyh rezimov tipicnogo elementa radioelektronnoj apparatury ili elektronnoj tehniki s lokal’nym istocnikom tepla za scet estestvennoj konvekcii // Mikroelektronika. - 2010. - T. 39, No 6. - S. 452-467.

Published

2012-10-01

Issue

Section

Articles

How to Cite

Sheremet М. А. (2012). Laminar and turbulent conjugate regimes of natural convection in a square enclosure. Computational Continuum Mechanics, 5(3), 327-344. https://doi.org/10.7242/1999-6691/2012.5.3.39