Modeling of the climbing of nonlinear surface gravity waves on the basis of Navier-Stokes equations

Authors

  • Iftikhar Balakishievich Abbasov Taganrog Institute of Technology of Southern Federal University

DOI:

https://doi.org/10.7242/1999-6691/2012.5.3.38

Keywords:

Navier-Stokes equations, numerical modeling, decomposition method, climbing of nonlinear surface gravity waves

Abstract

The paper deals with the problem of numerical modeling of the climbing of nonlinear surface gravity waves on the basis of Navier-Stokes equations. The two-dimensional formulation of the problem is considered, and the boundary and initial conditions are defined. The decomposition method for physical processes is used to construct a discrete model capable of accounting for the factor of filled cells. The results of two-dimensional numerical modeling of the process of climbing of nonlinear surface gravity waves on shallow water areas are presented.

Downloads

Download data is not yet available.

References

Zeleznak M.K., Pelinovskij E.N. Fiziko-matematiceskie modeli nakata cunami na bereg // Nakat cunami na bereg: Sb. naucn. trudov / Gor’kij: IPF AN SSSR, 1985. - S. 8-34.
Sokin U.I., Cubarov L.B., Marcuk An.G., Simonov K.V. Vycislitel’nyj eksperiment v probleme cunami. - Novosibirsk: Nauka, 1989. - 168 s.
Didenkulova I.I., Kurkin A.A., Pelinovskij E.N. Nakat odinocnyh voln razlicnoj formy na bereg // Izvestia RAN. FAO. - 2007. - T. 43, No 3. - S. 419-425.
Kawasaki K. Numerical simulation of breaking and post-breaking wave deformation process around a submerged breakwater // Coast. Eng. J. - 1999. -V. 41, N. 3&4. - P. 201-223. DOI
Zhao Q., Armfield S., Tanimoto K. Numerical simulation of breaking waves by a multi-scale turbulence model // Coast. Eng. - 2004. - V. 51, N. 1. - P. 53-80. DOI
Fletcer K. Vycislitel’nye metody v dinamike zidkostej: v 2 t. - M.: Mir, 1991. - T. 2. - 552 s.
Harlow F.H. Welch J.E. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface // Phys. Fluids. - 1965. - V. 8, N. 12. - P. 2182-2189. DOI
Anenko N.N. Metod drobnyh sagov resenia mnogomernyh zadac matematiceskoj fiziki. - Novosibirsk.: Nauka, 1967. - 196 s.
Suhinov A.I., Timofeeva E.F., Cistakov A.E. Postroenie i issledovanie diskretnoj matematiceskoj modeli rasceta pribreznyh volnovyh processov // Izvestia UFU. Tehniceskie nauki. - 2011. - T. 121, No 8. - S. 22-32.
Debol’skij V.K., Zajdler R., Massel’ S. Dinamika ruslovyh potokov i litodinamika pribreznoj zony mora. - M.: Nauka, 1994. - 303 s.
Kawasaki K., Takasu Y., Ut H.D. 2-d numerical wave flume with solid-gas-liquid interaction and its application // Proc. of 32nd Conf. on Coastal Engineering, Shanghai, China, 2010. - V. 57. - P. 1-15.
Kimmoun O. Branger H. A particle image velocimetry investigation on laboratory surf-zone breaking waves over a sloping beach // J. Fluid Mech. - 2007. - V. 588. - P. 353-397. DOI

Published

2012-10-01

Issue

Section

Articles

How to Cite

Abbasov, I. B. (2012). Modeling of the climbing of nonlinear surface gravity waves on the basis of Navier-Stokes equations. Computational Continuum Mechanics, 5(3), 322-326. https://doi.org/10.7242/1999-6691/2012.5.3.38