Numerical study of the effect of a surface active agent on convective mass transfer in laser surface melting of metal
DOI:
https://doi.org/10.7242/1999-6691/2012.5.3.29Keywords:
metal alloying, laser radiation, convective heat and mass transfer, numerical simulationAbstract
A mathematical model is proposed to describe the process of surface alloying of metals by laser pulses. The model takes into account the dependence of the surface tension gradient induced by temperature on the concentration of a surface active agent in the melt and on the heating temperature. Numerical simulation reveals the probability of occurrence of multi-vortex flows that promote the penetration of the alloying material into the metal.
Downloads
References
Vedenov A.A., Gladus G.G. Fiziceskie processy pri lazernoj obrabotke materialov. - M.: Energoatomizdat, 1985. - 208 s.
He X., Fuerschbach P.W., DebRoy T. Heat transfer and fluid flow during laser spot welding of 304 stainless steel // J. Phys. D: Appl. Phys. - 2003. - V. 36. - P. 1388-1398. DOI
Uglov A.A., Smurov I.Yu., Taguirov K.I., Guskov A.G. Simulation of unsteady-state thermocapillary mass transfer for laser doping of metals // Int. J. Heat Mass. Tran. - 1992. - V. 35, N. 4. - P. 783-793. DOI
Smurov I., Covelli L., Tagirov K., Aksenov L. Peculiarities of pulse laser alloying: Influence of spatial distribution of the beam // J. Appl. Phys. - 1992. - V. 71, N. 7. - P. 3147-3158. DOI
Majorov V.S. Lazernoe uprocnenie metallov // Lazernye tehnologii obrabotki materialov: sovremennye problemy fundamental’nyh issledovanij i prikladnyh razrabotok / Pod red. V.A. Pancenko. - M.: Fizmatlit, 2009. - S. 439-469.
Bagmutov V.P., Zaharov I.N. Modelirovanie teplovyh processov pri poverhnostnoj obrabotke neodnorodnyh metalliceskih tel vysokotemperaturnym dvizusimsa impul’snym istocnikom // Vycisl. meh. splos. sred. - 2011. - T. 4, No 1. - S. 5-16. DOI
Gladus G.G., Lihanskij V.V., Lobojko A.I. Vlianie poverhnostno-aktivnyh vesestv na teplo- i massoperenos pri plavlenii poverhnosti vesestva lazernym impul’som // Kvant. elektronika. - 1997. - T. 24, No 3. - S. 274-278. DOI
Zuev A.L., Kostarev K.G. Osobennosti koncentracionno-kapillarnoj konvekcii. // UFN. - 2008. - T. 178, No 10. - S. 1065-1085. DOI
Birih R.V., Rudakov R.N. Vlianie intensivnosti adsorbcionno-desorbcionnyh processov na koncentracionnuu konvekciu okolo kapli v gorizontal’nom kanale // Vycisl. meh. splos. sred. - 2010. - T. 3, No 1. - S. 24-31.
Sahoo P., DebRoy T., McNallan M.J. Surface tension of binary metal-surface active solute systems under conditions relevant to welding metallurgy // Metall. Mater. Trans. B. - 1988. - V. 19, N. 3. - P. 483-491. DOI
Ehlen G., Ludwig A., Sahm P.R. Simulation of time-dependent pool shape during laser spot welding: Transient Effects // Metall. Mater. Trans. A. - 2003. - V. 34, N. 12. - P. 2947-2961. DOI
Kawai Y. Diffusion of sulfur in liquid iron. I: Diffusion in pure iron // Sci. Rep. RITU. Ser. A. - 1957. - V. 9. - P. 78-83.
Hoche D., Muller S., Rapin G., Shinn M., Remdt E., Gubisch M., Schaaf P. Marangoni convection during free electron laser nitriding of titanium // Metall. Mater. Trans. B. - 2009. - V. 40, N. 4. - P. 497-507. DOI
Harlow F.H., Welch J.E. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface // Phys. Fluids. - 1965. - V. 8, N. 12. - P. 2182-2189. DOI
Patankar S.V., Spalding D.B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows // Int. J. Heat Mass Tran. - 1972. - V. 15, N. 10. - P. 1787-1806. DOI
Chorin A.J. A numerical method for solving incompressible viscous flow problems // J. Comput. Phys. - 1967. - V. 2, N. 1. - P. 12-26. DOI
Samarskij A.A., Nikolaev E.S. Metody resenij setocnyh uravnenij. - M.: Nauka, 1978. - 592 c.
Downloads
Published
Issue
Section
License
Copyright (c) 2012 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.