Finite-element algorithms for calculation of natural vibrations of three-dimensional shells

Authors

  • Sergey Vladimirovich Lekomtsev Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2012.5.2.28

Keywords:

natural vibrations, finite-element method, theory of shells, linear theory of elasticity, cylindrical, elliptical, open shells

Abstract

The natural oscillations of thin-walled structures are studied using two variants of the finite-element method. In the first variant, the shell is represented as a set of planar elements, which are under the action of both membrane and bending forces. The second variant is based on the equations of the theory of elasticity. Domain discretization is carried out using the 8-node finite element and incompatible displacement modes. In the numerical experiments, cylindrical, elliptical and open shells are considered. The influence of different boundary conditions and geometrical parameters on natural vibration frequencies is taken into account. The advantages and disadvantages of each approach are discussed.

Downloads

Download data is not yet available.

References

Kanok-Nukutchai W. A simple and efficient finite element for general shell analysis // Int. J. Numer. Meth. Eng. - 1979. - V. 14, N. 2. - P. 179-200. DOI
Olson M.D., Bearden T.W. A simple flat triangular shell element revisited // Int. J. Numer. Meth. Eng. - 1979. - V. 14, N. 1. - P. 51-68. DOI
Olson M.D. Issledovanie proizvol’nyh obolocek s pomos’u pologih obolocecnyh konecnyh elementov // Tonkostennye obolocecnye konstrukcii. Teoria, eksperiment, proektirovanie. - M.: Masinostroenie. - 1980. - S. 409-437.
Cowper G.R., Lindberg G.M., Olson M.D. A shallow shell finite element of triangular shape // Int. J. Solids Struct. - 1970. - V. 6, N. 8. - P. 1133-1156. DOI
Golovanov A.I., Tuleneva O.N., Sigabutdinov A.F. Metod konecnyh elementov v statike i dinamike tonkostennyh konstrukcij. - M.: Fizmatlit, 2006. - 392 s.
Dawe D.J. High-order triangular finite element for shell analysis // Int. J. Solids Struct. - 1975. - V. 11, N. 10. - P. 1097-1110. DOI
Ashwell D.G. Strain elements, with application to arches, ring and cylindrical shells // Finite Element for Thin Shells and Curved Members. - New York: John Wiley & Sons, 1976. - Chapt. 6. - P. 91-111.
Bogner F., Foks R., Smit L. Rascet cilindriceskoj obolocki metodom diskretnyh elementov // Raketnaa tehnika i kosmonavtika. - 1967. - T. 5, No 4. - S. 170-175.
Peleh B.L. Teoria obolocek s konecnoj sdvigovoj zestkost’u. - Kiev: Naukova dumka, 1973. - 248 s.
Carpenter N., Stolarski H., Belytschko T. A flat triangular shell element with improved membrane interpolation // Commun. Appl. Numer. M. - 1985. - V. 1, N. 4. - P. 161-168. DOI
Clough R.W., Johnson R.J. A finite element approximation for the analysis of thin shells // Int. J. Solids Struct. - 1968. - V. 4, N. 1. - P. 43-60. DOI
Bathe K.-J., Ho L.-W. A simple and effective element for analysis of general shell structures // Comput. Struct. - 1981. - V. 13, N. 5-6. - P. 673-681. DOI
Gordon L. A. K rascetu plastin i obolocek metodom konecnyh elementov // Izvestia VNII gidrotehniki. - 1972. - T. 99. - S. 168-178.
Zenkevic O.S. Metod konecnyh elementov v tehnike. - M.: Mir, 1975. - 544 s.
Ahmad S., Irons B.M., Zienkiewicz O.C. Analysis of thick and thin shell structures by curved finite elements // Int. J. Numer. Meth. Eng. - 1970. - V. 2, N. 3. - P. 419-451. DOI
Wilson E.L., Taylor R.L., Doherty W.P., Ghaboussi J. Incompatible displacement models // Numerical and Computer Methods in Structural Mechanics / Edited by S.J. Fenves, et al. - New York: Academic Press, 1973. - P. 43-57.
Taylor R.L., Beresford P.J., Wilson E.L. A non-conforming element for stress analysis // Int. J. Numer. Meth. Eng. - 1976. - V. 10, N. 6. - P. 1211-1219. DOI
Norachan P., Suthasupradit S., Kim K.-D. A co-rotational 8-node degenerated thin-walled element with assumed natural strain and enhanced assumed strain // Finite Elem. Anal. Des. - 2011. - V. 50. - P. 70-85. DOI
Bockarev S.A. Sobstvennye kolebania vrasausejsa krugovoj cilindriceskoj obolocki s zidkost’u // Vycisl. meh. splos. sred. - 2010. - T. 3, No 2. - S. 24-33.
Bochkarev S.A., Matveenko V.P. Natural vibrations and stability of shells of revolution interacting with an internal fluid flow // J. Sound Vib. - 2011. - V. 330, N. 13. - P. 3084-3101. DOI
Matveenko V.P., Kligman E.P., Urlov M.A., Urlova N.A. Modelirovanie i optimizacia dinamiceskih harakteristik smart-struktur s p’ezomaterialami // Fiz. mezomeh. - 2012. - T. 15, No 1. - S.75-85.
Zienkiewicz O.C., Taylor R.L. The Finite Element Method. Volume 1: The Basis. - Woburn, USA, 2000. - 707 p.
Lindholm U.S., Kana D.D., Abramson H.N. Breathing vibrations of a circular cylindrical shell with an internal liquid // J. Aeronautical Sciences. - 1962. - V. 29. - P. 1052-1059.
Bockarev S.A., Matveenko V.P. Cislennoe issledovanie vliania granicnyh uslovij na dinamiku povedenia cilindriceskoj obolocki s protekausej zidkost’u // MTT. - 2008. - No 3 - S. 189-199.
Bockarev S.A., Lekomcev S.V. Cislennoe modelirovanie uprugoj truby s tekusej zidkost’u // Vestnik PGTU. Mehanika. - Perm’: izd-vo PGTU, 2011. - No 3. - S. 5-14.
Mazuch T., Horacek J., Trnka J., Vesely J. Natural modes and frequencies of a thin clamped-free steel cylindrical storage tank partially filled with water: FEM and measurement // J. Sound Vib. - 1996. - V. 193, N. 3 - P. 669-690. DOI
Bockarev S.A., Matveenko V.P. Konecno-elementnyj analiz sobstvennyh kolebanij cilindriceskoj obolocki s zidkost’u // Vestnik PGTU. Vycislitel’naa mehanika. - Perm’: izd-vo PGTU, 2006. - No 4 - S. 3-12.

Published

2012-07-01

Issue

Section

Articles

How to Cite

Lekomtsev, S. V. (2012). Finite-element algorithms for calculation of natural vibrations of three-dimensional shells. Computational Continuum Mechanics, 5(2), 233-243. https://doi.org/10.7242/1999-6691/2012.5.2.28