Influence of effective medium permeability on stability of a two-layer system "pure fluid-porous medium" under high-frequency vibrations
DOI:
https://doi.org/10.7242/1999-6691/2012.5.2.27Keywords:
convection, porous medium permeability, two-layer system, vibrationAbstract
In the framework of the averaged approach a linear stability problem for a two-layer system consisting of pure fluid layer and porous medium saturated by the fluid under gravity and vertical high-frequency vibrations is investigated. It is shown that in the presence of vibrations neutral curves are bimodal in some range of parameters as in the case of a static gravity field. Vibrations stabilize the equilibrium of the two-layer system and increase the length of most unstable perturbation waves. Moreover, vibrations make long-wave perturbations to be most unstable at lower porous medium permeability and larger fluid layer thickness than in the absence of vibrations.
Downloads
References
Lubimov D.V., Muratov I.D. O konvektivnoj neustojcivosti v sloistoj sisteme // Gidrodinamika. - Perm’, 1977. - Vyp. 10. - S. 38-46.
Somerton C.W., Catton I. On the thermal instability of superposed porous and fluid layers // J. Heat Transfer. - 1982. - V. 104, N. 1. - P. 160-165. DOI
Chen F., Chen C.F. Onset of finger convection in a horizontal porous layer underlying a fluid layer // J. Heat Transfer. - 1988. - V. 110, N. 2. - P. 403-409. DOI
Zhao Pinghua, Chen C.F. Stability analysis of double-diffusive convection in superposed fluid and porous layers using a one-equation model // Int. J. Heat Mass Tran. - 2001. - V. 44, N. 24. - P. 4625-4633. DOI
Zen’kovskaa S.M. Dejstvie vysokocastotnoj vibracii na fil’tracionnuu konvekciu // PMTF. - 1992. - T. 33, No 5. - S. 83-88.
Zen’kovskaa S.M., Rogovenko T.N. Fil’tracionnaa konvekcia v vysokocastotnom vibracionnom pole // PMTF. - 1999. - T. 40, No 3. - S. 22-29.
Bardan G., Mojtabi A. On the Horton-Rogers-Lapwood convective instability with vertical vibration: Onset of covection // Phys. Fluids. - 2000. - V. 12, N. 11. - P. 2723-2731. DOI
Lyubimov D.V. Convective flows under the influence of high-frequency vibrations // Eur. J. Mech. B / Fluids. - 1995. - V. 14, N. 4. - P. 439-458.
Lubimov D.V., Lubimova T.P., Muratov I.D. Vlianie vibracij na vozbuzdenie konvekcii v dvuhslojnoj sisteme poristaa sreda - odnorodnaa zidkost’ // Gidrodinamika. Mezvuz. sb. nauc. trudov / Perm. un-t. - Perm’, 2004. - Vyp. 14. - S. 148-159.
Lubimov D.V., Lubimova T.P., Muratov I.D., Siskina E.A. Vlianie vibracij na vozniknovenie konvekcii v sisteme gorizontal’nogo sloa cistoj zidkosti i sloa poristoj sredy, nasysennoj zidkost’u // MZG. - 2008. - No 5. - S. 132-143.
Gersuni G.Z., Zuhovickij E.M. Konvektivnaa ustojcivost’ neszimaemoj zidkosti. - M.: Nauka, 1972. - 392 s.
Gershuni G.Z., Lyubimov D.V. Thermal vibrational convection. - N.Y.: Wiley, 1998. - 358 p.
Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical Recipes in C++ - The art of scientific computing. - Cambridge University Press, 2007. - 1018 p.
Lobov N.I., Lubimov D.V., Lubimova T.P. Cislennye metody resenia zadac teorii gidrodinamiceskoj ustojcivosti: uceb. posobie. - Perm’: Izd-vo PGU, 2004. - 101 s.
Korn G.A., Korn T.M. Spravocnik po matematike dla naucnyh rabotnikov i inzenerov. - M.: Nauka, 1984. - 831 s.
Downloads
Published
Issue
Section
License
Copyright (c) 2012 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.