Application of the multipole expansion method to evaluation of the stress state of an infinite elastic plane containing several circular holes

Authors

  • Vyacheslav Viktorovich Mokryakov Ishlinsky Institute for Problems in Mechanics RAS

DOI:

https://doi.org/10.7242/1999-6691/2012.5.2.20

Keywords:

elasticity, plane problem, multipoles, stress concentration

Abstract

The 2D-elasticity problem of several closely-spaced circular holes in an infinite plane under biaxial loading at infinity is considered. The solution of the problem is found using the method of multipole decomposition, which is based on the representation of the jump displacement function as a sum of multipoles. Different arrangements of holes and their configurations are considered. The stress state in the region of mutual interaction of holes and near their contours is obtained. Special attention is given to the stress concentration around the holes. The points and magnitudes of stress concentration are determined and compared with those obtained around a single hole under the same loading conditions.

Downloads

Download data is not yet available.

References

Mokrakov V.V. Primenenie metoda mul’tipolej dla resenia zadaci o dvuh blizko raspolozennyh otverstiah // MTT. - 2007. - No 5. - S. 129-145.
Mokrakov V.V. Issledovanie zavisimosti effektivnyh podatlivostej ploskosti s resetkoj krugovyh otverstij ot parametrov resetki // Vycisl. meh. splos. sred. - 2010. - T. 3, No 3. - S. 90-101.
Mushelisvili N.I. Singularnye integral’nye uravnenia. - M.: Nauka, 1968. - 513 s.
Mushelisvili N.I. Nekotorye osnovnye zadaci matematiceskoj teorii uprugosti. - M.: Nauka, 1966. - 707 s.
Savruk M.P. Dvumernye zadaci uprugosti dla tel s tresinami. - Kiev: Naukova dumka, 1981. - 323 s.
Lin’kov A.M. Kompleksnyj metod granicnyh integral’nyh uravnenij teorii uprugosti. - SPb.: Nauka, 1999. - 382 s.
Grekov M.A. Singularnaa ploskaa zadaca teorii uprugosti. - SPb.: Izd-vo SPbGU, 2001. - 192 c.
Lifanov I.K. Metod singularnyh integral’nyh uravnenij i cislennyj eksperiment. - M.: TOO <>, 1995. - 520 s.
Grigoluk E.I., Fil’stinskij L.A. Perforirovannye plastiny i obolocki. - M.: Nauka, 1970. - 556 s.
Vanin G.A. Mikromehanika kompozicionnyh materialov. - Kiev: Naukova dumka, 1985. - 302 s.
Ufland A.S. Bipolarnye koordinaty v teorii uprugosti. - M.-L.: Gostehizdat, 1950. - 232 s.
Ustinov U.A. Koncentracia naprazenij v poluploskosti i ploskosti s krugovymi otverstiami pri rastazenii // Izv. AN SSSR. Mehanika. - 1965. - No 1. - S. 145-148.
Savin G.N. Koncentracia naprazenij okolo otverstij. - M.-L.: Gostehizdat, 1951. - 496 s.
Savin G.N. Raspredelenie naprazenij okolo otverstij. - Kiev: Naukova dumka, 1968. - 887 s.
Gol’dstejn R.V., Osipenko N.M. Struktury v processah razrusenia // MTT. - 1999. - No 5. - S. 49-71.
Gol’dstejn R.V. Razrusenie pri szatii // Uspehi mehaniki. - 2003. - T. 2, No 2. - S. 3-20.
Dyskin A.V., Germanovich L.N., Ustinov K.B. Asymptotic solution for long cracks emanated from a pore in compression // Int. J. Fract. - 1993. - V. 62, N. 4. - P. 307-324.
Ustinov K.B. Asymptotic solution for long cracks emanated from a hole in bi-axial loading // Int. J. Fract. - 1994. - V. 68, N. 3. - P. R73-R77. DOI
Goldstein R.V., Shushpannikov P.S. Application of the method of multipole expansions in the 3D-elasticity problem for a medium with ordered system of spherical pores // ZAMM. - 2009. - V. 89, N. 6. - P. 504-510. DOI

Published

2012-07-01

Issue

Section

Articles

How to Cite

Mokryakov, V. V. (2012). Application of the multipole expansion method to evaluation of the stress state of an infinite elastic plane containing several circular holes. Computational Continuum Mechanics, 5(2), 168-177. https://doi.org/10.7242/1999-6691/2012.5.2.20