Mathematical methods in the theory of pure bending of rectangular beams made of weakening material with symmetric stress-strain diagram

Authors

  • Valeriy Vladimirovich Struzhanov Institute of Engineering Science UB RAS
  • Elena Aleksandrovna Bakhareva Institute of Engineering Science UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2012.5.2.19

Keywords:

pure bending, hardening, weakening, stability, Newton-Kantorovich method, simple iterations, first-approximation stability

Abstract

The problem of pure bending of a beam with rectangular cross-section is considered. The beam is made of the material with a diagram having the falling branch. The stress-strain state of the beam in both steady and unsteady equilibrium positions is determined by the Newton-Kantorovich method and the method of simple iterations. The analysis of pure bending stability is carried out using the catastrophe theory methods and the method of investigating stability in the first approximation. It is shown that the divergence of simple iterations corresponds to the moment of stability loss.

Downloads

Download data is not yet available.

References

Sedov L.I. Mehanika splosnoj sredy. - M.: Nauka, 1970. - T. 1. - 492 s.
Poston T., Stuart I. Teoria katastrof i ee prilozenia. - M.: Mir, 1980. - 608 s.
Arnol’d V.I., Varcenko A.N., Gusejn-Zade S.M. Osobennosti differenciruemyh otobrazenij. Klassifikacia kriticeskih tocek, kaustik i volnovyh frontov. - M.: Nauka, 1982. - 304 s.
Vil’deman V.E., Sokolkin U.V., Taskinov A.A. Mehanika neuprugogo deformirovania i razrusenia kompozicionnyh materialov. - M.: Nauka. Fizmatlit, 1997. - 288 s.
Ibragimov V.A., Klusnikov V.D. Nekotorye zadaci dla sred s padausej diagrammoj // Izv. AN SSSR. MTT. - 1971. - No 4. - S. 116-121.
Voronuk I.S. Issledovanie izgiba balok s ucetom nispadausej vetvi diagrammy deformirovania // DAN USSR. Seria A, fiz.-mat. i tehn. nauki. - 1982. - No 6. - S. 37-41.
Timosenko S.P., Gere Dz. Mehanika materialov. - M.: Mir, 1976. - 669 s.
Horn R., Dzonson C. Matricnyj analiz. - M.: Mir, 1989. - 655 s.
Il’in V.A., Sadovnicij V.A., Sendov Bl.H. Matematiceskij analiz. - M.: TK Velbi, Izd-vo Prospekt, 2004. - C. 1. - 672 s.
Kantorovic L.V., Akilov G.P. Funkcional’nyj analiz. - M.: Nauka, 1977. - 742 s.
Krasnosel’skij M.A, Vajnikko G.M., Zabrejko P.P., Rutickij A.B., Stecenko V.A. Priblizennoe resenie operatornyh uravnenij. - M.: Nauka, 1969. - 455 s.
Fihtengol’c G.M. Kurs differencial’nogo i integral’nogo iscislenia. - M.: Nauka, 1970. - T. 1. - 607 s.
Kolmogorov A.N., Fomin S.V. Elementy teorii funkcij i funkcional’nogo analiza. - M.: Nauka, 1989. - 624 s.
Gilmor R. Prikladnaa teoria katastrof: v 2 kn. - M.: Mir, 1984. - Kn. 1. - 350 s.
Arsenin V.A. Metody matematiceskoj fiziki i special’nye funkcii. - M.: Nauka, 1974. - 431 s.
Kacanov L.M. Osnovy teorii plasticnosti. - M.: Nauka, 1969. - 420 s.

Published

2012-07-01

Issue

Section

Articles

How to Cite

Struzhanov, V. V., & Bakhareva, E. A. (2012). Mathematical methods in the theory of pure bending of rectangular beams made of weakening material with symmetric stress-strain diagram. Computational Continuum Mechanics, 5(2), 158-167. https://doi.org/10.7242/1999-6691/2012.5.2.19