Mathematical methods in the theory of pure bending of rectangular beams made of weakening material with symmetric stress-strain diagram
DOI:
https://doi.org/10.7242/1999-6691/2012.5.2.19Keywords:
pure bending, hardening, weakening, stability, Newton-Kantorovich method, simple iterations, first-approximation stabilityAbstract
The problem of pure bending of a beam with rectangular cross-section is considered. The beam is made of the material with a diagram having the falling branch. The stress-strain state of the beam in both steady and unsteady equilibrium positions is determined by the Newton-Kantorovich method and the method of simple iterations. The analysis of pure bending stability is carried out using the catastrophe theory methods and the method of investigating stability in the first approximation. It is shown that the divergence of simple iterations corresponds to the moment of stability loss.
Downloads
References
Sedov L.I. Mehanika splosnoj sredy. - M.: Nauka, 1970. - T. 1. - 492 s.
Poston T., Stuart I. Teoria katastrof i ee prilozenia. - M.: Mir, 1980. - 608 s.
Arnol’d V.I., Varcenko A.N., Gusejn-Zade S.M. Osobennosti differenciruemyh otobrazenij. Klassifikacia kriticeskih tocek, kaustik i volnovyh frontov. - M.: Nauka, 1982. - 304 s.
Vil’deman V.E., Sokolkin U.V., Taskinov A.A. Mehanika neuprugogo deformirovania i razrusenia kompozicionnyh materialov. - M.: Nauka. Fizmatlit, 1997. - 288 s.
Ibragimov V.A., Klusnikov V.D. Nekotorye zadaci dla sred s padausej diagrammoj // Izv. AN SSSR. MTT. - 1971. - No 4. - S. 116-121.
Voronuk I.S. Issledovanie izgiba balok s ucetom nispadausej vetvi diagrammy deformirovania // DAN USSR. Seria A, fiz.-mat. i tehn. nauki. - 1982. - No 6. - S. 37-41.
Timosenko S.P., Gere Dz. Mehanika materialov. - M.: Mir, 1976. - 669 s.
Horn R., Dzonson C. Matricnyj analiz. - M.: Mir, 1989. - 655 s.
Il’in V.A., Sadovnicij V.A., Sendov Bl.H. Matematiceskij analiz. - M.: TK Velbi, Izd-vo Prospekt, 2004. - C. 1. - 672 s.
Kantorovic L.V., Akilov G.P. Funkcional’nyj analiz. - M.: Nauka, 1977. - 742 s.
Krasnosel’skij M.A, Vajnikko G.M., Zabrejko P.P., Rutickij A.B., Stecenko V.A. Priblizennoe resenie operatornyh uravnenij. - M.: Nauka, 1969. - 455 s.
Fihtengol’c G.M. Kurs differencial’nogo i integral’nogo iscislenia. - M.: Nauka, 1970. - T. 1. - 607 s.
Kolmogorov A.N., Fomin S.V. Elementy teorii funkcij i funkcional’nogo analiza. - M.: Nauka, 1989. - 624 s.
Gilmor R. Prikladnaa teoria katastrof: v 2 kn. - M.: Mir, 1984. - Kn. 1. - 350 s.
Arsenin V.A. Metody matematiceskoj fiziki i special’nye funkcii. - M.: Nauka, 1974. - 431 s.
Kacanov L.M. Osnovy teorii plasticnosti. - M.: Nauka, 1969. - 420 s.
Downloads
Published
Issue
Section
License
Copyright (c) 2012 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.