Numerical model of solid-phase precipitation in a two-temperature fluid-saturated viscous medium
DOI:
https://doi.org/10.7242/1999-6691/2012.5.2.18Keywords:
compaction, fluids, heat and mass transfer, precipitation, finite element method, gradient projection methodAbstract
A numerical model based on the equations of viscous compaction is developed to investigate solid-phase precipitation taking into account heat and mass transfer between solid and liquid phases. The temperatures of the matrix and fluid differ. The numerical solution is obtained by the finite element method combined with the projection gradient method. Modeling of solid-phase precipitation in the ascending fluid flow reveals that this process plays a significant role in transferring the heat transported by the fluid to the matrix. Geophysical applications of the results obtained confirm their validity in the production of temperature anomalies in the Earth interior.
Downloads
References
Karakin A.V. Kompakcia s mnogofaznym fluidom // Fizika Zemli. - 2005. - No 9. - S. 12-20.
Rabcikov I.D. Fluidy v mantii Zemli // Priroda. - 1988. - No 12. - S. 12-17.
Konnor Dz., Brebbia K. Metod konecnyh elementov v mehanike zidkosti. - L.: Sudostroenie, 1979. - 264 s.
Nigmatulin R.I. Dinamika mnogofaznyh sred. - M.: Nauka, 1987. - C. 1. - 464 s.
Zubkov V.S. K voprosu o vlianii uglevodorodno-neorganiceskogo fluida na glubinnuu geodinamiku i processy v litosfere // Vestnik GeoIGU. Geohimiceskie processy i poleznye iskopaemye. - Irkutsk: Izd-vo GeoIGU, 2000. - Vyp. 2. - S. 10-28.
Gliko A.O. Vlianie processa osazdenia tverdoj fazy iz gidrotermal’nogo rastvora na zalecivanie tresin i evoluciu pronicaemosti sistemy // Fizika Zemli. - 2002. - No 1. - C. 53-59.
Lowell R.P., Van Cappellen Ph., Germanovich L.N. Silica precipitation in fractures and the evolution of permeability in hydrothermal upflow zones // Science. - 1993. - V. 260, N. 5105. - P. 192-194. DOI
Martin J.T., Lowell R.P. Precipitation of quartz during high-temperature. fracture-controlled hydrothermal upflow at ocean ridges: Equilibrium versus linear kinetics // J. Geophys. Res. - 2000. - V. 105, N. B1. - P. 869-882. DOI
Pak V.V. Mnogotemperaturnaa model’ kompakcii magmaticeskogo rasplava v astenosfere (Cislennyj podhod) // Fizika Zemli. - 2007. - No 9. - C. 79-86.
Terkot D., Subert Dz. Geodinamika. Geologiceskoe prilozenie fiziki splosnyh sred. - M.: Mir, 1985. - T. 2. - 360 s.
Pak V.V. Cislennoe resenie zadaci Stoksa so svobodnoj granicej modificirovannym metodom proekcii gradienta // Vycisl. meh. splos. sred. - 2008. - T. 1, No 1. - C. 80-91.
Marcuk G.I. Metody vycislitel’noj matematiki. - Novosibirsk: Nauka, 1977. - 456 s.
Bezverhnij V.L., Pak V.V. Fluidodinamika i tektogenez Zapadno-Tihookeanskoj zony perehoda // Vestnik DVO RAN. - 2003. - No 4. - S. 132-140.
Gavrilov S.V., Abbot D.H. Termomehaniceskaa model’ teplo- i massoperenosa v okrestnosti zony subdukcii // Fizika Zemli. - 1999. - No 12. - S. 3-12.
Germanovich L.N., Lowell R.P., Astakhov D.K. Temperature-dependent permeability and bifurcations in hydrothermal flow // J. Geophys. Res. - 2001. - V.106, N. B1. - P. 473-495. DOI
Downloads
Published
Issue
Section
License
Copyright (c) 2012 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.