Simulation of atomic-force microscope contact mode operation taking into account nonmechanical forces of interaction with a specimen surface
DOI:
https://doi.org/10.7242/1999-6691/2012.5.1.8Keywords:
atomic force microscopy, nonlinear elastic polymers, van der Waals forces, surface tension forcesAbstract
The discrete-mechanical model describing the interaction between the surface of a nonlinear-elastic polymeric material and the АFM cantilever of the atomic-force microscope (AFM) in the contact operation mode is proposed. The model takes into account not only the mechanical interaction between the AFM probe the material under study and but also the effect of van der Waals intermolecular force and the surface tension forces associated with the curvature of the specimen surface. Their influence on the general picture of interaction is found to be significant on the nano-scale level. The model consists of two sequentially joint spring-like elements. The first element (purely elastic) represents the mechanical effect of the АFМ cantilever. The second element is responsible for the mechanical response of the sample to intending of the AFM probe. The mechanical force is determined from the solution of a contact boundary-value problem. Analytical expressions for intermolecular and surface forces are obtained as the functions of the probe geometry and the distance between its apex and the sample surface.
Downloads
References
Golovin U.I. Vvedenie v nanotehnologiu. - M.: Masinostroenie, 2003. -112 s.
Giessibl F.J. AFM’s path to atomic resolution // Materials Today. - 2005. - V. 8, N. 5. - P. 32-41. DOI
Schuh C.A. Nanoindentation studies of materials // Materials Today. - 2006. - V. 9, N. 5. - P. 32-40. DOI
Bhushan B. Nanotribology and nanomechanics. - Springer, 2005. - 1148 p.
Butt H-J., Capella B., Kappl V. Force measurements with atomic force microscope: Technique, interpretation and applications // Surface Science Reports. - 2005. - V. 59. - P. 1-150. DOI
Bhushan B. Handbook of micro/manotribology. - Springer, 1999. - 433 p.
Vanlandingham M.R., McKnight S.H., Palmese G.R., Eduljee R.F., Gillepie J.W., McCulough Jr.R.L. Relating elastic modulus to indentation response using atomic force microscopy // Journal of Materials Science Letters. - 1997. - V. 16, N. 2. - P. 117-119. DOI
Dao M., Chollacoop N., Van Vliet K.J., Venkatesh T.A., Suresh S. Computational modeling of the forward and reverse problems in instrumented sharp indentation // Acta Mater. - 2001 -V. 49, N. 19. - P. 3899-3918. DOI
Fischer-Cripps A.C. Nanoindentation and indentation measurements // Mater. Sci. Eng. - 2004. -V. 44. - P. 91-102.
Fischer-Cripps A.C. Nanoindentation. - Springer, 2002. - 217 p.
Mironov V.L. Osnovy skaniruusej zondovoj mikroskopii. - N. Novgorod: Izd-vo Instituta fiziki mikrostruktur RAN, 2004. - 115 s.
Macihin V.B., Arzamascev A.A. Dvuhmernaa model’ struktury materiala v processe nanoindentirovania // Elektronnyj zurnal <> - S. 2267-2277. - http://zhurnal.ape.relarn.ru/articles/2003/190.pdf (data obrasenia: 26.03.2012).
Szlufarska I. Atomistic simulations of nanoindentationn // Mater. Today. - 2006. - V. 9, N. 5. - P. 42-50. DOI
Dedkov G.V, Dysekov M.B. Deformacia zony kontakta i adgezionnoe trenie mezdu zondom skaniruusego frikcionnogo mikroskopa i atomarno-gladkoj poverhnost’u // ZTF. - 2000. - T. 70, vyp. 7. - S. 96-101.
Tsukruk V.V., Huang Z., Chizhik S.A., Gorbunov V.V. Probing of micromechanical properties of compliant polymeric materials // J. Mater. Sci. - 1998. - V. 33, N. 20. - P. 4905-4909. DOI
Batog G.S. Baturin A.S. Sesin E.P. Modelirovanie kontaktnoj zestkosti polusfericeskogo ostrovkovogo vklucenia // ZTF. - 2008. - T. 78, vyp. 1. - S. 126-128.
Sauer R.A. A computational contact model for nanoscale rubber adhesion // Proc. of the VI European conference on Constructive Models for Rubber. Germany, Dresden, September 7-10, 2009. - CRC Press, 2009. - P. 47-52.
Morozov I.A., Garisin O.K., Volodin F.V., Kondurin A.V., Lebedev S.N. Eksperimental’noe i cislennoe modelirovanie elastomernyh kompozitov putem issledovania nanosloev poliizoprena na uglerodnoj poverhnosti // Mehanika kompozicionnyh materialov i konstrukcij. - 2008. - T. 14, No 1. - S. 3-15.
Timosenko S.P., Gud’er Dz. Teoria uprugosti. - M.: Nauka, 1975. - 576 c.
Israelachvili J.N. Intermolecular and surface forces. - Academic Press, 1998. - 450 p.
Ivanova E.A., Krivcov A.M., Morozov N.F., Firsova A.D. Teoreticeskaa mehanika. Opredelenie ekvivalentnyh uprugih harakteristik diskretnyh sistem: Uceb. posobie - SPb: Izd-vo SPbGPU, 2004. - 33 s.
Lifsic E.M., Pitaevskij L.P. Statisticeskaa fizika. Cast’ 2. Teoria kondensirovannogo sostoania. - M.: Nauka, 1978. - 448 s.
Smirnov B.M. Fizika slaboionizirovannogo gaza. - M.: Nauka, 1972. - 416 s.
Avorskij B.M., Detlaf A.A. Spravocnik po fizike. - M.: Nauka, 1985. - 512 s.
Tablicy fiziceskih velicin. Spravocnik / Pod red. akad. I.K. Kikoina. - M.: Atomizdat, 1976. - 1009 s.
Downloads
Published
Issue
Section
License
Copyright (c) 2012 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.