Study of vibrations of viscoelastic circular cylindrical panels of variable thickness

Authors

  • Rustamkhan Alimkhanovich Abdikarimov Тashkent Institute of Finance
  • Bakhtiyar Alimovich Khudayarov Tashkent Institute of Irrigation and Melioration

DOI:

https://doi.org/10.7242/1999-6691/2012.5.1.2

Keywords:

cylindrical panels, variable thickness, viscoelasticity, nonlinear vibrations, integro-differential equation, numerical method

Abstract

The problem of vibrations of viscoelastic cylindrical panels of variable thickness is considered. The system of integro-differential equations (IDE) in partial derivatives is applied to describe the relation between vibrations and deflections. Using the Bubnov-Galerkin method based on the polynomial approximation of deflections, the problem is reduced to the study of the system of ordinary integro-differential equations, in which time is the independent variable. The integro-differential equations are solved by the numerical method, which is based on elimination of the singularity from the relaxation kernel of the integral operator. A numerical algorithm that has been derived using this method is presented. The analysis of nonlinear vibrations of viscoelastic cylindrical panels of variable thickness has revealed a number of novel mechanical effects.

Downloads

Download data is not yet available.

References

Karpov V.V. Geometriceski nelinejnye zadaci dla plastin i obolocek i metody ih resenia. - M.: Izd.-vo ASV, 1999. - 154 s.
Ignat’ev O.V., Karpov V.V., Filatov V.N. Variacionno-parametriceskij metod v nelinejnoj teorii obolocek stupencato-peremennoj tolsiny. - Volgograd: VolGASA, 2001. - 210 s.
Antonenko E.V., Hlopceva N.S. Osesimmetricnaa forma poteri ustojcivosti tonkostennyh cilindrov peremennoj tolsiny // Matematika. Mehanika: Sb. nauc. tr. / Saratov: Izd.-vo Sarat. Un-ta, 2006. - No 8. - S. 165-167.
Gabbasov R.F., Mussa Sali, Filatov V.V. Kolebania plastin peremennoj zestkosti // Izvestia vuzov. Stroitel’stvo. - 2006. - No 5. - S. 9-15.
Abrosimov A.A., Filippov V.N. Issledovanie NDS plastin peremennoj tolsiny v geometriceski nelinejnoj postanovke s raznymi sistemami approksimiruusih funkcij // Prikladnaa matematika i mehanika: Sb. nauc. tr. Ul’anov. gos.-tehn. universiteta / Ul’anovsk: Izd.-vo UlGTU. - 2007. - S. 3-8.
Budak V.D., Grigorenko A.A., Puzyrev S.V. Resenie zadaci o svobodnyh kolebaniah pramougol’nyh v plane pologih obolocek peremennoj tolsiny // Prikladnaa mehanika. - 2007. - T. 43, No 4. - S. 89-99.
Koreneva E.B. Analiticeskie metody rasceta plastin peremennoj tolsiny i ih prakticeskie prilozenia. - M.: Izd-vo ASV, 2009. - 240 s.
Verlan’ A.F., Abdikarimov R.A., Esmatov H. Cislennoe modelirovanie nelinejnyh zadac dinamiki vazkouprugih sistem s peremennoj zestkost’u // Elektronnoe modelirovanie. - 2010. - T. 32, No 2. - S. 3-14.
Vol’mir A.S. Nelinejnaa dinamika plastinok i obolocek. - M.: Nauka, 1972. - 432 s.
Badalov F.B., Esmatov H., Usupov M. O nekotoryh metodah resenia sistem integro-differencial’nyh uravnenij, vstrecausihsa v zadacah vazkouprugosti // PMM. - 1987. - T. 51, No 5. - S. 867-871.
Esmatov H., Abdikarimov R.A., Bobonazarov S.P. Kolebania i ustojcivost’ vazkouprugoj truby s protekausej cerez nee zidkost’u pri razlicnyh granicnyh usloviah // Uzbekskij zurnal <>. - Taskent, 1995. - No 1. - S.20-24.
Koltunov M.A. Polzucest’ i relaksacia. - M.: Vyssaa skola, 1976. - 276 s.
Eshmatov B.Kh., Mukherjee S. Nonlinear vibration of viscoelastic composite cylindrical panels // J. of Vibration and Acoustics. - 2007. - V. 129. - P. 285-296. DOI
Tolok V.A. Algoritmizacia rasceta cilindriceskih obolocek. - Taskent: Fan, 1969. - 121 s.
Babakov I.M. Teoria kolebanij. - M.: Nauka, 2004. - 592 s.

Published

2012-05-01

Issue

Section

Articles

How to Cite

Abdikarimov, R. A., & Khudayarov, B. A. (2012). Study of vibrations of viscoelastic circular cylindrical panels of variable thickness. Computational Continuum Mechanics, 5(1), 11-18. https://doi.org/10.7242/1999-6691/2012.5.1.2