Conservative numerical method for solving static linear boundary value problems of elastic shells of revolution
DOI:
https://doi.org/10.7242/1999-6691/2012.5.1.11Keywords:
elasticity, theory of shells, Hamiltonian systemAbstract
In this paper, we propose an algorithm for constructing a conservative numerical scheme for solving boundary value problems for linear Hamiltonian systems with an arbitrary finite-order approximation to the exact solution. Application of the algorithm expressed in high-level languages allowed us to develop the program for calculating the stress-strain state of a thin multilayered anisotropic shell of revolution. The results of calculations of real shells made of composite materials are presented.
Downloads
References
Kireev I.V., Nemirovskij U.V. APؐʾߑdؑiC’Pڐؐՠmetody issledovania linejnyh gamil’tonovyh sistem uravnenij statiki uprugih obolocek vrasenia // Vycisl. meh. splos. sred. - 2011. - T. 4, No 2. - S. 35-60.
Kantorovic L.V., Akilov G.P. Funkcional’nyj analiz. - M.: Nauka, 1984. - 750 s.
Krylov V.I., Sul’gina L.T. Spravocnaa kniga po cislennomu integrirovaniu. - M.: Nauka, 1966. - 372 s.
Kireev I.V. Simmetricnye cislennye metody resenia kraevyh zadac dla sistem obyknovennyh differencial’nyh uravnenij // Modelirovanie v mehanike splosnyh sred: Mezvuz. sb. naucnyh statej. / Krasnoarsk, 1992. - S. 81-91.
Samarskij A.A., Popov U.P. Raznostnye metody resenia zadac gazovoj dinamiki. - M.: Nauka, 1992. - 424 s.
Kireev I.V., Nemirovskij U.V. Gamil’tonova formalizacia opredelausih sootnosenij linejnoj teorii obolocek vrasenia // Vycisl. meh. splos. sred. - 2010. - T. 3, No 4. - S. 29-52.
Kireev I.V. Kraevye zadaci dla gamil’tonovyh sistem obyknovennyh differencial’nyh uravnenij: Prepr. No 11 / VC SO AN SSSR. - Krasnoarsk, 1990. - 31 c.
Bucy R.S. Two-point boundary value problems of linear Hamiltonian system // SIAM J. Appl. Math. - 1967. - V. 15, N. 6, - P. 1385-1389. DOI
Il’in V.A., Sadovnicij V.A., Sendov B.H. Matematiceskij analiz. - M.: Nauka, 1979. - 720 s.
Gantmaher F.R. Teoria matric. - M.: Nauka, 1988. - 538 s.
Suetin P.K. Klassiceskie ortogonal’nye mnogocleny. - M.: Nauka, 1979. - 416 s.
Voevodin V.V., Kuznecov U.A. Matricy i vycislenia. - M.: Nauka, 1984. - 320 s.
Cernyseva A.A, Kireev I.V. Modifikacia kriteria Uilkinsona ostanovki iteracij v metode soprazennyh gradientov // Vestnik KrasGU. Seria <> / KrasGU, 2005. - No 4.- C. 173-177.
Sajdurov V.V. Mnogosetocnye metody konecnyh elementov. - M.: Nauka, 1989. - 288 s.
Vanin G.A. Mikromehanika kompozicionnyh materialov. - Kiev: Nauk. dumka, 1985. - 304 s.
Alfutov N.A, Zinov’ev P.A., Popov B.G. Rascet mnogoslojnyh plastin i obolocek iz kompozicionnyh materialov. - M.: Masinostroenie, 1984. - 264 s.
Downloads
Published
Issue
Section
License
Copyright (c) 2012 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.