Calculation of the parameters of surface acoustic waves in piezoelectrics using the finite element method

Authors

  • Aleksandr Vladimirovich Osetrov Saint Petersburg State Electrotechnical University LETI
  • Van So Nguyen Saint Petersburg State Electrotechnical University LETI

DOI:

https://doi.org/10.7242/1999-6691/2011.4.4.41

Keywords:

finite element method, surface acoustic wave, interdigital transducer, surface acoustic wave devices

Abstract

A numerical procedure has been developed for solving the two-dimensional problem of propagation of surface acoustic waves in piezoelectric materials in the presence of metal electrodes that excite mechanical vibrations (interdigital transducers). Three components of the mechanical displacement vector and an electric potential are taken as the independent variables. The problem is reduced to the system of differential equations, which can be solved using the Comsol Multiphysics software package (PDE modes). For the case of no metal electrodes, a comparison is made between the obtained data and the available analytical solutions. For lithium niobate, an excellent agreement has been observed between our results and the measurement data from the literature. It is shown that all three components of the mechanical displacement vector have to be taken into account, which excludes application of most FEM-based software packages designed to evaluate only the displacements in the wave propagation plane. The results can be useful for calculating a wide range of surface acoustic wave devices for mobile communications, and for navigation and medical equipment.

Downloads

Download data is not yet available.

References

Morgan D. Surface acoustic wave filters with applications to electronic communications and signal processing. - Elsevier, 2007. - 448 p.
Hashimoto K.-Y., Omori T., Yamaguchi M. Analysis of SAW excitation and propagation under periodic metallic grating structures // Int. J. of High Speed Electronics and Systems. - 2000. - V. 10, N. 3. - R. 685-734.
Laude V., Reinhardt A., Ballandras S., Khelif A., Solal M. Fast FEM/BEM computation of SAW harmonic admittance and slowness curves // IEEE Ultras. Symp. - 2004. - R. 445-448.
Finger N., Kovacs G., Shoberl J., Langer U. Accurate FEM/BEM - simulation of surface acoustic wave filters // IEEE Ultras. Symp. - 2003. - R. 1680-1685.
Kubat F., Ruile W., Reindl L. P-matrix based calculations of the potential and kinetic power in resonating SAW-structures // IEEE Ultras. Symp. - 2002. - R. 329-332.
Taziev R. M. FEM/BEM for simulation of LSAW devices // IEEE Trans. UFFC. - 2007. - V. 54, N. 10. - R. 2060-2069. DOI
Cerednik V.I., Dvoeserstov M.U. COM parametry, P matricy i FEM-BEM teoria // Sovremennye naukoemkie tehnologii. - 2006. - No 8. - S. 74-75.
Taziev R.M. Osobennosti vozbuzdenia kvaziprodol’nyh i sdvigovyh vytekausih akusticeskih voln v p’ezoelektrikah // Fundamental’nye problemy sovremennogo materialovedenia . - 2010. - T. , No 3. - S. 17-23.
Pollard T.B., Pereira da Cunha M. Improved SHSAW transduction efficiency using grating and uniform electrode guiding // IEEE Trans. UFFC. - 2011. - V. 58, N. 5. - R. 1087-1096. DOI
Hofer M., Finger N., Kovacs G., Schoberl J., Zaglmayr S., Langer U., Lerch R. Finite-element simulation of wave propagation in periodic piezoelectric SAW structures // IEEE Trans. UFFC. - 2006. - V. 53, N. 6. - R. 1192-1201. DOI
Peng D., Fengqi Yu.F. A novel FEA simulation model for RFID SAW tag // IEEE Trans. UFFC. - 2009. - V. 56, N. 8. - R. 1753-1760. DOI
Matthews G.I., Baghai-Wadji A. Analysis of additional surface mechanical features in micro-acoustic devices - A combined FEM-JTFA approach // IEEE Ultras. Symp. - 2009. - R. 2676-2679.
Smole P., Ruile W., Pongratz P. Characterization of surface acoustic wave propagation in ZnO layer on a conductive substrate // IEEE Ultras. Symp. - 2002. - R. 307-310.
Rocha-Gaso M.-I., Fernandez-Diaz R., Arnau-Vives A., March-Iborra C. Mass sensitivity evaluation of a Love wave sensor using the 3D finite element method // IEEE Freq. Contr. Symp. - 2010. - R. 228-231. DOI
Darinskii A.N., Weihnacht M., Schmidt H. Surface acoustic wave scattering from steps, grooves, and strips on piezoelectric substrates // IEEE Trans. UFFC. - 2010. - V. 57, N. 9. - R. 2042-2050. DOI
Frommelt T., Gogel D., Kostur M., Talkner P., Hanggi P., Wixforth A. Flow patterns and transport in Rayleigh surface acoustic wave streaming: sombined finite element method and raytracing numerics versus experiments // IEEE Trans. UFFC. - 2008. - V. 55, N. 10. - R. 2298-2305. DOI
Zhgoon S., Tsimbal D., Shvetsov A., Bhattacharjee K. 3D finite element modeling of real size SAW devices and experimental validation // IEEE Ultras. Symp. - 2008. - R. 1932-1935.
Osetrov A.V., Nguen Van So. Analiz poverhnostnyh akusticeskih voln v oblasti vstrecno-styrevogo preobrazovatela // Izvestia SPbGETU <>. - 2011. - No 1. - C. 81-88.
Royer D, Dieulesaint E. Elastic waves in solids. Part I: Free and guided propagation. - Springer, 2000. - 374 p.
Viktorov I.A. Zvukovye poverhnostnye volny v tverdyh telah // M.: Nauka, 1981. - 287 s.
Shen D.P., Haus H.A. Analysis of metal-strip SAW gratings and transducers // IEEE SU. - 1985. - V. SU 32, N. 3. - P. 395-408.
Bauerschmidt P., Lerch R., Machui J., Ruile W., Visintini G. Reflection and transmission coefficients of SAW in periodic grating computed by finite element analysis // IEEE Ultras. Symp. - 1990. - R. 421-423. DOI
Dmitriev V.F. Teoria svazannyh voln - universal’nyj metod rasceta ustrojstv na poverhnostnyh akusticeskih volnah // ZTF. - 2004. - T. 74, No 10. - S. 94-102.
Akovlev L.A. Osnovnye uravnenia mehaniki i elektrodinamiki splosnyh sred: Uceb. posobie. - SPb.: GETU, 1992. - 76 s.
Buchner M., Ruile W., Dietz A. , Dill R. FEM analysis of the reflection coefficient of SAWs in an infinite periodic array // IEEE Ultras. Symp. - 1991. - R. 371-375.
Osetrov A.V., Frolich H.-J., Koch R., Chilla E. Acoustoelastic effect in anisotropic layered structures // Phys. Rev. B. - 2000. - V. 62, N. 21. - R. 13963-13969. DOI
Osetrov A. V., Frolich H.-J., Koch R., Chilla E. Acoustoelastic effect in stressed heterostructures // IEEE Trans. UFFC. - 2002. - V. 49, N. 1. - R. 94-98. DOI
Slobodnik A.J., Conway E.D., Delmonico R.T. Microwave acoustics handbook. Vol. I A. surface wave velocities // NTIS. Springfield - AFCRL-TR-73-0597- AD0780172 - VA 22151.
Kovacs G., Anhorn M., Engan H.E., Visintini G., Ruppel C.C.W. Improved material constants for LiNbO3 and LiTaO3 // IEEE Ultras. Symp. - 1990. - R. 435-438. DOI
Wright P.V. Modeling and experimental measurements of the reflection properties of SAW metallic gratings // IEEE Ultras. Symp. - 1984. - R. 54-63.

Published

2011-12-01

Issue

Section

Articles

How to Cite

Osetrov, A. V., & Nguyen, V. S. (2011). Calculation of the parameters of surface acoustic waves in piezoelectrics using the finite element method. Computational Continuum Mechanics, 4(4), 71-80. https://doi.org/10.7242/1999-6691/2011.4.4.41