Solution of the problem of dynamics of highly viscous, incompressible media and its application to modeling the stess-strain state of the Earth's tectonosphere

Authors

  • Vladimir Yurievich Kosygin Computing Center FEB RAS
  • Yuriy Vladislavovich Pyatakov Computing Center FEB RAS

DOI:

https://doi.org/10.7242/1999-6691/2011.4.4.38

Keywords:

tectonosphere, heterogeneity, viscosity, dynamics equations, speed, pressure, gravitational field, polyhedron

Abstract

The fundamental system of dynamic equations that describe highly viscous, homogeneous incompressible media has been solved. This allows us to make the transition from the non-uniform system of equations to the calculation of integrals of a certain type under rather general restrictions on the character of distribution of external forces. As an example, an analytical solution has been found for the problem of deformations and stresses in tectonosphere caused by the action of a viscous, abnormal in density, inclusion (in the form of polyhedron) in the Earth's gravitational field. The medium and inclusion are assumed be of identical viscosity, which restricts the applicability of the obtained results, but does not lessen their theoretical importance.

Downloads

Download data is not yet available.

References

Artuskov E.V. Geodinamika. - M.: Nauka, 1979. - 328 s.
Lojcanskij L.G. Mehanika zidkosti i gaza. - M.: Nauka, 1970. - 904 s.
Landau L.D. Lifsic E.M. Gidrodinamika. - M.: Nauka, 1986. - 736 s.
Novackij V. Teoria uprugosti. - M.: Mir, 1975. - 872 s.
Ladyzenskaa O.A. Matematiceskie voprosy dinamiki vazkoj neszimaemoj zidkosti. - M: Nauka, 1970. - 288 s.
Gunter N.M. Teoria potenciala i ee primenenie k osnovnym zadacam matematiceskoj fiziki. - M.: Izd-vo tehniko-teoreticeskoj literatury, 1953. - 416 s.
Il’in V.A., Poznak E.G. Osnovy matematiceskogo analiza. - M.: Nauka, 1973. - C. 2. - 448 s.
Serkerov S.A. Teoria gravitacionnogo i magnitnogo potencialov. - M.: Nedra , 1990. - 304 s.
Kosygin V.U. Gravitacionnoe pole i plotnostnye modeli tektonosfery Severo-Zapada Tihogo okeana. - Vladivostok: DVO AN SSSR, 1991. - 201 s.
Starostenko V.I. Gravitacionnoe pole odnorodnyh n-ugol’nyh plastin i porozdaemyh imi prizm: obzor // Fizika Zemli. - 1998. - No 3. - S. 37-53.
Strahov V.N., Lapina M.I. Pramye zadaci gravimetrii i magnitometrii dla proizvol’nyh odnorodnyh mnogogrannikov // Izv. AN SSSR. Fizika Zemli. - 1982. - No 4. - S. 45-67.

Published

2011-12-01

Issue

Section

Articles

How to Cite

Kosygin, V. Y., & Pyatakov, Y. V. (2011). Solution of the problem of dynamics of highly viscous, incompressible media and its application to modeling the stess-strain state of the Earth’s tectonosphere. Computational Continuum Mechanics, 4(4), 42-51. https://doi.org/10.7242/1999-6691/2011.4.4.38