Parallel solution of the elastic-plastic problem using a tridiagonal algorithm for LU-decomposition from the ScaLAPACK library
DOI:
https://doi.org/10.7242/1999-6691/2011.4.4.37Keywords:
elastic-plastic problem, parallel computing, ScaLAPACKAbstract
The paper considers the parallel solution of the elastic-plastic problem using a tridiagonal LU-based solver from the ScaLAPACK library, including the solution of linear systems of equations. A brief description of the tridiagonal matrix algorithm is presented. The results of numerical experiments are given.
Downloads
References
Pozdeev A.A., Trusov P.V., Nasin U.I. Bol’sie uprugo-plasticeskie deformacii. - M.: Nauka, 1986. - 232 s.
Cleary A., Dongarra J. Implementation in ScaLAPACK of divide-and-conquer algorithms for banded and tridiagonal linear systems: Computer Science Dept. Technical Report CS-97-358, 1997 - URL: http://www.netlib.org/lapack/lawnspdf/lawn125.pdf (data obrasenia: 25.01.2011).
Arbenz P., Cleary A., Dongarra J., Hegland M.A. Comparison of parallel solvers for diagonally dominant and general narrow-banded linear systems // Tech. Report 312, ETH Zurich, Computer Science Dept, 1999 - URL: http://www.netlib.org/lapack/lawnspdf/lawn142.pdf (data obrasenia: 25.01.2011).
Blackford L.S., Choi J., Cleary A., D’Azeuedo E. et al. ScaLAPACK User’s Guide. Philadelphia, USA, Society for Industrial and Applied Mathematics, 1997. - URL: http://www.netlib.org/scalapack/slug (data obrasenia: 25.01.2011).
Kormen T.H., Lejzerson C.I., Rivest R.L., Stajn K. Algoritmy: postroenie i analiz. - M.: Vil’ams, 2005. - 1296 s.
Konovalov A.V. Opredelausie sootnosenia dla uprugoplasticeskoj sredy pri bol’sih plasticeskih deformaciah // Izv. RAN. MTT. - 1997. - No 5. - S. 139-147.
Downloads
Published
Issue
Section
License
Copyright (c) 2011 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.