Computational procedure for determining the limiting values of the loading parameters of mechanical systems

Authors

  • Valeriy Vladimirovich Struzhanov Institute of Engineering Science UB RAS
  • Natalia Vladimirovna Burmasheva Institute of Engineering Science UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2011.4.4.45

Keywords:

gradient system, potential function, separatrix, nonconvex potential, maximum loads

Abstract

A technique for calculating the limiting values of the loading parameters of mechanical systems with a finite number of elements is presented. The technique is based on the approximate method of constructing the separatrix of the potential functions of such systems. To illustrate the validity of the proposed approach, the problem of determining limiting loads applied to the rod system, which is used for triaxial stretching of an elementary cube made of nonlinear material, is solved.

Downloads

Download data is not yet available.

References

Vil’deman V.E., Sokolkin U.V., Taskinov A.A. Mehanika neuprugogo deformirovania i razrusenia kompozicionnyh materialov. - M.: Nauka, 1997. - 288 s.
Struzanov V.V., Mironov V.I. Deformacionnoe razuprocnenie materiala v elementah konstrukcij. - Ekaterinburg: UrO RAN, 1995. - 192 s.
Sedov L.I. Mehanika splosnoj sredy. T. 1. - M.: Nauka, 1970. - 492 s.
Struzanov V.V., Prosvirakov E.U., Burmaseva N.V. Ob odnom metode postroenia edinogo potenciala // Vycisl. meh. splos. sred. - 2009. - T. 2, No 2. - S. 96-107.
Gilmor R. Prikladnaa teoria katastrof: V 2-h kn. Kn. 1. - M.: Mir, 1984. - 350 s.
Horn R., Dzonson C. Matricnyj analiz.- M.: Mir, 1989. - 655 s.
Struzanov V.V. Ob ustojcivosti dvuhosnogo rastazenia kvadratnoj plastiny v odnoj gradientnoj mehaniceskoj sisteme // Trudy Instituta matematiki i mehaniki. - 2010. - T. 16, No 5. - S. 187-195.

Published

2011-12-01

Issue

Section

Articles

How to Cite

Struzhanov, V. V., & Burmasheva, N. V. (2011). Computational procedure for determining the limiting values of the loading parameters of mechanical systems. Computational Continuum Mechanics, 4(4), 107-113. https://doi.org/10.7242/1999-6691/2011.4.4.45