Influence of the dynamics of inclusion on elastic wave propagation in a waveguide

Authors

  • Sergey Nikolaevich Shubin Saint-Petersburg State Polytechnic University
  • Evgeny Evgenievich Gilyov Saint-Petersburg State Polytechnic University
  • Aleksey Ivanivich Borovkov Saint-Petersburg State Polytechnic University

DOI:

https://doi.org/10.7242/1999-6691/2011.4.3.33

Keywords:

waveguide, inclusion, spectral distribution, eigenfrequency

Abstract

The purpose of this study is to determine the geometric sizes of an inclusion in a waveguide through the analysis of acoustic wave passage. The influence of a spectrum of inclusion on reflected and transmitted waves is determined by considering the one-dimensional model of an infinite rod with an inertial and elastic inclusion. The obtained result is generalized to the case of an acoustic waveguide with an absolutely rigid inclusion in the form of a cylinder. The relationship between the geometric sizes of the inclusion and the spectral distribution of reflected and transmitted waves is demonstrated.

Downloads

Download data is not yet available.

References

Kerroll Dz. Gidraty prirodnogo gaza. - M.: Premium Inziniring, 2007. - 318 s.
Ma J., Simonetti F., Lowe M.J.S. Scattering of the fundamental torsional mode by an axisymmetric layer inside a pipe // J. Acoust. Soc. Am. - 2006. - V. 120, N. 4. - P. 1871-1880. DOI
Kwun H., Bartels K.A., Dynes C. Dispersion of longitudinal waves propagating in liquid-filled cylindrical shells // J. Acoust. Soc. Am. - 1999. - V. 105, N. 5. - P. 2601-2611. DOI
Kumar R. Dispersion of axially symmetric waves in empty and fluid-filled cylindrical shells // Acustica. -1972. -V. 27, N. 6. - P. 317-329.
Lafleur L.D., Shields F.D. Low-frequency propagation modes in a liquid-filled elastic tube waveguide // J. Acoust. Soc. Am. - 1995. - V. 97, N. 3. - P. 1435-1445. DOI
Sinha B.K., Plona T.J., Kostek S., Chang S.-K. Axisymmetric wave propagation in fluid-loaded cylindrical shells. I. Theory // J. Acoust. Soc. Am. - 1992. - V. 92, N. 2. - P. 1132-1143. DOI
Plona T.J., Sinha B.K., Kostek S., Chang S.-K. Axisymmetric wave propagation in fluid-loaded cylindrical shells. II. Theory versus experiment // J. Acoust. Soc. Am. - 1992. - V. 92, N. 2. - P. 1144-1155. DOI
Elvira-Segura L. Acoustic wave dispersion in a cylindrical elastic tube filled with a viscous liquid // Ultrasonics. - 2000. - V. 37, N. 8. - P. 537-547. DOI
Aristegui C., Lowe M.J., Cawley P. Guided waves in fluid-filled pipes surrounded by different fluids // Ultrasonics. - 2001. - V. 39. - P. 367-375. DOI
Vollmann J., Dual J. High-resolution analysis of the complex wave spectrum in a cylindrical shell containing a viscoelastic medium. I. Theory and numerical results // J. Acoust. Soc. Am. - 1997. - V. 102, N. 2. - P. 896-908. DOI
Vollmann J., Breu R., Dual J. High-resolution analysis of the complex wave spectrum in a cylindrical shell containing a viscoelastic medium. II. Experimental results versus theory // J. Acoust. Soc. Am. - 1997. - V. 102, N. 2. - P. 909-920. DOI
Mors F.M., Fesbah G. Metody teoreticeskoj fiziki. - M.: Izd-vo inostrannoj literatury, 1960. -T. 2. - 886 s.
Simonetti F., Cawley P. A guided wave technique for the characterization of highly attenuative viscoelastic materials // J. Acoust. Soc. Am. - 2003. - V. 114, N. 1. - P. 158-165. DOI
Ma J., Lowe M.J.S., Simonetti F. Feasibility study of sludge and blockage detection inside pipes using guided torsional waves // Meas. Sci. Technol. - 2007. - V. 18. - P. 2629-2641. DOI
Slepan L.I. Nestacionarnye uprugie volny. - L.: Sudostroenie, 1972. - 376 s.
D’Alembert J.L. Recherches sur la courbe que forme une corbe tendue, mise en vibration // Histoire de l’Academie Royale des Sciences et belles letters. - 1749. - V. 3. - P. 214-220.
Zilin P.A. Prikladnaa mehanika. Teoria tonkih uprugih sterznej. Ucebnoe posobie. - SPb.: Izd-vo Politehn. un-ta, 2007. - 101 s.
Hallquist J.O. LS-DYNA. Theoretical manual / Livermore Software Technology Corporation, 1998. - 498 r.
Il’gamov M.A., Gil’manov A.N. Neotrazausie uslovia na granicah rascetnoj oblasti. - M.: FIZMATLIT, 2003. - 240 s.
Basu U., Chopra A.K. Perfectly matched layers for time-harmonic elastodynamics of unbounded domains: theory and finite-element implementation // Comput. Methods Appl. Mech. Eng. - 2003. - V. 192, N. 11-12. - P. 1337-1375. DOI
Rzevkin S.N. Kurs lekcij po teorii zvuka. - M.: Izd-vo MGU, 1960. - 336 s.

Published

2011-12-01

Issue

Section

Articles

How to Cite

Shubin, S. N., Gilyov, E. E., & Borovkov, A. I. (2011). Influence of the dynamics of inclusion on elastic wave propagation in a waveguide. Computational Continuum Mechanics, 4(3), 120-128. https://doi.org/10.7242/1999-6691/2011.4.3.33