Development of a Boltzmann solver for engeneering problems

Authors

  • Aleksandr Anatolievich Siner OJSC «Aviadvigatel»
  • Evgeniy Vasilievich Koromyslov Perm State National Research University
  • Aleksey Matveevich Sipatov OJSC «Aviadvigatel»

DOI:

https://doi.org/10.7242/1999-6691/2011.4.3.30

Keywords:

Boltzmann equation, Bhatnagar-Gross-Krook approximation, collision integral, relaxation model

Abstract

We describe the development of a full Boltzmann equation solver. Cartesian grids with nodes located at hypercube corners are used to discretize the velocity space. Both the relaxation model and the spectral method proposed by Ibragimov are used to calculate the collision integral. The fast Fourier algorithm for the spectral method of the collision integral calculation is implemented. The solver under development is tested for the one-dimensional shock wave problem (Sod test) and for the simple relaxation problem. The properties of the solver are investigated with respect to velocity cell size, space cell size and relaxation time. The high parallel efficiency of the solver is shown using OpenMP technology. The solver is a challenging alternative to the software based on the Navier-Stokes equation for sub- and supersonic aerodynamic problems.

Downloads

Download data is not yet available.

References

Kocin N.E., Kibel’ I.A., Roze N.V. Teoreticeskaa gidromehanika. - M.: Fizmatgiz, 1963. - C.1. - 584 c.
Cercin’ani K. Teoria i prilozenia uravnenia Bol’cmana. - M.: Mir, 1978. - 496 s.
Aristov V.V., Zabelok S.A. Vihrevaa struktura neustojcivoj strui, izucaemoj na osnove uravnenia Bol’cmana // Matematiceskoe modelirovanie. - 2001. - T. 13, No 6. - S. 87-92.
So R.M.C., Leung R.C.K., Fu S.C. Modelled Boltzmann equation and its application to shock-capturing simulation // AIAA Journal. - 2008. - V. 46, N. 12. - R. 3038-3048. DOI
Chen S., Doolen G.D. Lattice Boltzmann method for fluid flow // Annular Review of Fluid Mechanics. - 1998. - V. 30. - R. 329-364. DOI
Filbet F., Russo G. High order numerical methods for the space non-homogeneous Boltzmann equation // Journal of Computational Physics. - 2003. - V. 186, N. 2. - R. 457-480. DOI
Bird G.A. Molecular gas dynamics. - Oxford, Clarendon Press, 1976. - 238 p.
Bhatnagar P. L., Gross E. P., and Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component system // Physical review. - 1954. - V. 94, N. 3. - R. 511-525. DOI
Ibragimov I., Rjasanow S. Numerical solution of the Boltzmann equation on the uniform grid. Preprint No 63. - Saarbrucken, 2002. - 29 p.
Qu K., Shu C., Chew Y. T. Alternative method to construct equilibrium functions in lattice-Boltzmann method simulation of inviscid compressible flows at high Mach number // Physical Review E. - 2007. - V. 75, N. 3. (DOI: 10.1103/PhysRevE.79.036706)
Krook M., Wu T.T. Exact solutions of Boltzmann equation // Physics of Fluids. - 1977. - V. 20, N. 10. - R. 1589-1595. DOI

Published

2011-12-01

Issue

Section

Articles

How to Cite

Siner, A. A., Koromyslov, E. V., & Sipatov, A. M. (2011). Development of a Boltzmann solver for engeneering problems. Computational Continuum Mechanics, 4(3), 83-95. https://doi.org/10.7242/1999-6691/2011.4.3.30