Iterative algorithm for solving the retrospective problem of natural thermal convection of a viscous fluid

Authors

  • Igor Anatolievich Tsepelev Institute of Mathematics and Mechanics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2011.4.2.19

Keywords:

Stokes equation, retrospective problem, viscous fluid flows, finite volume method, ill-posed problem, natural thermal convection, incompressible flow, engineering software packages

Abstract

A retrospective problem consisting in the recovery of a priori unknown initial state of a viscous incompressible fluid on the basis of its known final state is investigated. A fluid dynamics model in the Boussinesq approximation is described by Stokes, incompressibility and thermal balance equations under corresponding initial and boundary conditions. To solve the problem in reverse time, a new iterative approach has been developed in which the unstable initial problem is reduced to a series of stable problems. An algorithm, obtained using the proposed approach, is implemented on the parallel computer in OpenFOAM. The results show the computational efficiency of the developed algorithm.

Downloads

Download data is not yet available.

References

Landau L.D., Lifsic E.M. Gidrodinamika. - M.: Nauka, 1986. - 738 c.
Ladyzenskaa O.A. Matematiceskie voprosy dinamiki vazkoj neszimaemoj zidkosti. - M.: Nauka, 1970. - 288 c.
Ismail-zade A.T., Korotkij A.I., Najmark B.M, Cepelev I.A. Cislennoe modelirovanie trehmernyh vazkih tecenij pod vozdejstviem gravitacionnyh i teplovyh effektov // Z. vycisl. matem. i matem. fiz. - 2001. - T. 41, N 9. - S. 1399-1415.
Tihonov A.N., Arsenin V.A. Metody resenia nekorrektnyh zadac. - M.: Nauka, 1979. - 288 s.
Ivanov V.K., Vasin V.V., Tanana V.P. Teoria linejnyh nekorrektnyh zadac i ee prilozenia. - M.: Nauka, 1978. - 206 s.
Lavrent’ev M.M. O nekotoryh nekorrektnyh zadacah matematiceskoj fiziki. - Novosibirsk: SO AN SSSR, 1962. - 92 s.
Ismail-Zadeh A., Korotkii A., Schubert G., Tsepelev I. Numerical techniques for solving the inverse retrospective problems of thermal evolution of the Earth interior // Computers and Structures. - 2009. - V. 87, Issue 11-12. - P. 802-811. DOI
Korotkii A.I., Tsepelev I.A. Solution of a retrospective inverse problem for one nonlinear evolutionary model // Proc. of Steklov Institute of Mathematics. - 2003. - Suppl. 2. - P. 80-94.
Ismail-zade A.T., Korotkij A.I., Cepelev I.A. Trehmernoe cislennoe modelirovanie obratnoj retrospektivnoj zadaci teplovoj konvekcii na osnove metoda kvaziobrasenia // Z. vycisl. matem. i matem. fiz. - 2006. - T. 46, N 12. - C. 2279-2290.
Samarskij A.A., Vabisevic P.N., Matus P.P. Raznostnye shemy s operatornymi mnozitelami. - Minsk: COTZ, 1998. - 442 c.
Wang Y., Hutter K. Comparisons of numerical methods with respect to convectively dominated problem // Int. J. Numer. Meth. Fluid. - 2001. - V. 37. - P. 721-745. DOI
Samarskij A.A., Gulin A.V. Cislennye metody. - M.: Nauka, 1989. - 432 s.
Samarskij A.A, Vabisevic P.N, Vasil’ev V.I. Iteracionnoe resenie retrospektivnoj obratnoj zadaci teploprovodnosti // Matemat. modelirovanie. - 1997. - T. 9, N 5. - C. 119-127.
http://foam.sourceforge.net/doc/Guides-a4/UserGuide.pdf (data obrasenia: 10.08.2010).
http://foam.sourceforge.net/doc/Guides-a4/ProgrammersGuide.pdf (data obrasenia: 10.08.2010).
Patankar S. Cislennye metody resenia zadac teploobmena i dinamiki zidkosti. - M.: Energoatomizdat, 1984. - 312 s.
Axelsson O. Iterative Solution Methods. - Cambridge: Univ. Press, 1994. - 672p.
Ismail-Zadeh A., Schubert G., Tsepelev I., Korotkii A. Thermal evolution and geometry of the descending lithosphere beneath the SE-Carpathians: An insight from the past // Earth and Planetary Science Letters. - 2008. - V. 273, Issue 1-2. - P. 68-79. DOI

Published

2011-12-01

Issue

Section

Articles

How to Cite

Tsepelev, I. A. (2011). Iterative algorithm for solving the retrospective problem of natural thermal convection of a viscous fluid. Computational Continuum Mechanics, 4(2), 119-127. https://doi.org/10.7242/1999-6691/2011.4.2.19