Application of iteration method for solving the problem of deformation of unidirectional composites with nonlinear viscoelastic matrix

Authors

  • Roman Georgievich Kulikov Perm State Technical University
  • Nikolay Alexandrovich Trufanov Perm State Technical University

DOI:

https://doi.org/10.7242/1999-6691/2011.4.2.14

Keywords:

nonlinear viscoelasticity, iteration algorithm, fiber composites, finite element method

Abstract

Some numerical aspects of an iteration method that is based on the idea of physical immersion method and applied to nonlinear viscoelastic problems are examined by solving the problem of deformation of the periodic unit cell of a fiber composite with a nonlinear viscoelastic matrix. A numerical solution procedure, suggesting that the initial nonlinear non-homogeneous viscoelastic problem is reduced to an iterative sequence of linear elastic problems for homogeneous isotropic materials, is realized. Relaxation processes, taking place in the elementary cell of a fiber composite at various deformation levels, are examined.

Downloads

Download data is not yet available.

References

Van Fo Fy G.A. Konstrukcii iz armirovannyh plastmass. - Kiev: Tehnika, 1971. - 220 s.
Maksimov R.D. Dlitel’naa polzucest’ organoplastika // Mehanika kompozitnyh materialov. - 2001. - N 4. - S. 435-450.
Ericksen R.H. Room tem prelature creep of Kevlar 49 Epoxy composites // Composites. - 1976. - V. 7, N 3. - P. 189-194. DOI
Sturgeon J.B. Creep of fiber reinforced thermosetting resins // Creep engineering materials. - 1978. - P. 175-195.
Opredelenie nelinejnyh vazko-uprugih harakteristik napolnennyh polimernyh materialov // Kosmonavt. i raketostr. - 2002. - N 28. - S. 202-214.
Bykov D.L., Konovalov D.N. Nelinejnaa endohronnaa teoria stareusih vazkouprugih materialov // Izv. RAN. Meh. tverd. tela. - 2002. - N 4. - S. 63-76.
Pobedra B.E. Ob obobsennoj termodinamike v mehanike kompozitov. // Izv. RAN. Meh. tverd. tela. - 2003. - N 4. - S. 145-156.
Golub V.P., Kobzar’ U.M., Fernati P.P. Nelinejnaa polzucest’ voloknistyh odnonapravlennyh kompozitov pri rastazenii v napravlenii armirovania // Prikl. meh. - 2007. - N 5. - S. 20-34.
Sarkisan V.S., Bezoan E.K., Grigoran M.G. K teorii neodnorodnyh anizotropnyh nelinejno- vazkouprugih tel // Prikl. probl. procn. i plastic. - 2000. - N 61. - S. 12-17.
Arutunan N.H., Kolmanovskij V.V. Teoria polzucesti neodnorodnyh tel. - M.: Nauka, 1983. - 336 s.
Bugakov I.I. Polzucest’ polimernyh materialov (teoria i prilozenia). - M.: Nauka, 1973. - 288 s.
Il’usin A.A., Pobedra B.E. Osnovy matematiceskoj teorii termovazkouprugosti - M.: Nauka, 1970. - 280 s.
Kulikov R.G., Trufanov N.A. Iteracionnyj metod resenia kvazistaticeskih nelinejnyh zadac vazkouprugosti // Vycisl. meh. splos. sred.- 2009. - T. 2, N 3. - S. 44-56.
Sardakov I.N., Trufanov N.A., Matveenko V.P. Metod geometriceskogo pogruzenia v teorii uprugosti. - Ekaterinburg: UrO RAN, 1999. - 298 s.
Svetaskov A.A. Opredelenie effektivnyh harakteristik neodnorodnyh vazkouprugih tel // Vycislitel’nye tehnologii. - 2001. - T. 6, N 1. - S. 52-64.
Pavlov S.M., Svetaskov A.A. Iteracionnyj metod resenia zadac linejnoj vazkouprugosti // Izvestia VUZov. Fizika. - 1993. - T. 36, N 4. - S. 129-137.
Sardakov I.N. Teoreticeskie polozenia metoda geometriceskogo pogruzenia dla kraevyh zadac uprugoplasticeskogo tela // Obsie zadaci i metody issledovania plasticnosti i vazkouprugosti materialov i konstrukcij. - Sverdlovsk, 1986. - S. 123-127.
Malmejster A.A., Anson U.O. Prognozirovanie relaksacionnyh svojstv epoksidnogo
Zenkevic O. Metod konecnyh elementov v tehnike. - M.: Mir, 1975. - 541 s

Published

2011-12-01

Issue

Section

Articles

How to Cite

Kulikov, R. G., & Trufanov, N. A. (2011). Application of iteration method for solving the problem of deformation of unidirectional composites with nonlinear viscoelastic matrix. Computational Continuum Mechanics, 4(2), 61-71. https://doi.org/10.7242/1999-6691/2011.4.2.14