Closed-form solutions of dynamic coupled thermoelasticity problems for a cylinder and a sphere

Authors

  • Alexandr Grigorievich Zhigalin Samara State University
  • Sergey Alexandrovich Lychev Ishlinsky Institute for Problems in Mechanics RAS

DOI:

https://doi.org/10.7242/1999-6691/2011.4.2.12

Keywords:

coupled thermoelasticity, non-self-conjugate operators, analytical solutions, micron scale solids, influence of coupling

Abstract

The closed-form solutions of the linear coupled thermoelasticity problem for a finite cylinder and a sphere are obtained. The solutions are constructed as an expansion in a series of eigenfunctions of the differential operators generated by the initial-boundary value problems under study. Special boundary conditions and symmetries are formulated, which allows us to solve the thermoelasticity problem of bodies of canonic shape without resorting to numerical methods and to estimate the influence of the coupling between the thermal and mechanical fields on their time distribution depending on the size of the examined body. The obtained solutions of the coupled problems and the solutions of the corresponding thermal conductivity problems are compared. It is shown that for micron-scale bodies the amplitude of thermal waves caused by the coupling between the thermal and mechanical fields increases significantly compared to the amplitude of analogous waves in macrobodies and constitutes a few per cent of the initial value of thermal action.

Downloads

Download data is not yet available.

References

Sneddon I.N., Berri D.S. Klassiceskaa teoria uprugosti. - M.: GI Fiz.-mat. lit., 1961. - 220 s.
Senickij U.E. K reseniu svazannoj dinamiceskoj zadaci termouprugosti dla beskonecnogo cilindra i sfery // Prikl. mehanika. - 1982. - T. 18, No 6. - S. 34-41.
Novackij V. Dinamiceskie zadaci termouprugosti. - M.: Mir, 1970. - 256 s.
Novackij V. Teoria uprugosti. - M.: Mir, 1975. - 872 s.
Lycev S.A., Senickij U.E. Nesimmetricnye integral’nye preobrazovania i ih prilozenia k zadacam vazkouprugosti // Vestnik Samarskogo gos. un-ta. Estestvennonaucnaa seria. Spec. vypusk. - 2002. - S. 16-38. 6.
Lycev S.A. Svazannaa dinamiceskaa zadaca termovazkouprugosti // Izv. RAN. MTT. - 2008. - No 5. - S. 95-113.
Tablicy fiziceskih velicin / Pod red. I.K. Kikoina. - M.: Atomizdat, 1976. - 1008 s.
Gohberg I.C., Krejn M.G. Vvedenie v teoriu linejnyh nesamosoprazennyh operatorov v gil’bertovom prostranstve. - M.: Nauka, 1965. - 448 s.
Keldys M.V. O polnote sobstvennyh funkcij nekotoryh klassov nesamosoprazennyh linejnyh operatorov // UMN. - 1971. - T. 26, Vyp. 4(160). - S. 15-41.
Markus A.S. Vvedenie v spektral’nuu teoriu polinomial’nyh operatornyh puckov. - Kisinev: Stiinca, 1986. - 260 s.
Kamke E. Spravocnik po obyknovennym differencial’nym uravneniam. - M.: Nauka, 1971. - 589 s.
Mors F.M., Fesbah G. Metody teoreticeskoj fiziki. - M.: IL, 1958. - T. 1. - 931 s.
Mors F.M., Fesbah G. Metody teoreticeskoj fiziki. - M.: IL, 1960. - T. 2. - 897 s.
Cernuschi F., Figari A., Fabbri L. Thermal wave interferometry for measuring the thermal diffusivity of thin slabs // J. of Mat. Sci. - 2000. - V. 35, N 23. - P. 5891-5897. DOI

Published

2011-12-01

Issue

Section

Articles

How to Cite

Zhigalin, A. G., & Lychev, S. A. (2011). Closed-form solutions of dynamic coupled thermoelasticity problems for a cylinder and a sphere. Computational Continuum Mechanics, 4(2), 17-34. https://doi.org/10.7242/1999-6691/2011.4.2.12