Effective stiffness of corrugated plate

Authors

  • Sergey Vladimirovich Sheshenin Lomonosov Moscow State University
  • Olga Alexandrovna Hodos Lomonosov Moscow State University

DOI:

https://doi.org/10.7242/1999-6691/2011.4.2.20

Keywords:

periodic corrugated plate, method of homogenization, effective stiffness

Abstract

This paper presents a homogenization technique applied to periodic in-plane corrugated plates. The developed method allows the calculation of the tension stiffness, the bending stiffness and the tension-bending coupled stiffness. This problem is computationally difficult because the stiffness values differ by several orders of magnitude in one and the same plate. The use of the model permits a substantial saving in computing resources. For the stress-strain analysis of the plate in a first approximation, it is sufficient to compute all the effective stiffness values for a periodic cell and then to use these values in the solution of the flat plate bending problem. The accuracy of the solution depends on the character of the problem. For a smoothly varying transverse load and a large-size plate, the accuracy is high enough. The validity of the computer program developed for calculating the effective stiffness of corrugated plates has been verified.

Downloads

Download data is not yet available.

References

Sesenin S. V. Asimptoticeskij analiz periodiceskih v plane plastin// Izv.RAN, Mehanika tverdogo tela. - 2006. - No 6. - S. 71-79.
Kohn R.V., Vogelius M. A new model of thin plates with rapidly varying thickness // Int. J. Solids and Struct. - 1984. - V. 20, No 4. - P. 333-350. DOI
Panasenko G.P., Rezcov M.V. Osrednenie trehmej zadaci teorii uprugosti v neodnorodnoj plastine // Dokl. AN SSSR. - 1987. - T. 294. -No 5. - S. 1061-1065.
Levinski T., Telega J.J. Plates, laminates and shells. Asymptotic analysis and homogenization. - Singapore; London: World Sci. Publ., 2000. - 739 p.
Muravleva L.V., Sesenin S.V. Ob osrednenii tonkostennyh tel // Izv. RAN. Mehanika tverdogo tela. - 2004. - No 4. - S. 129-138.
Sesenin S.V. Primenenie metoda osrednenia k plastinam, periodiceskim v plane // Vestnik Moskovskogo universiteta. - 2006. - No 1.- S. 47-51.
Kolpakov A.G. Homogenized models for thin-walled nonhomogeneous structures with initial stresses. - Springer Verlag: Berlin, Heidelberg, 2004. - 228 p.
Jones R.M. Mechanics of composite materials. - Philadelphia; L.:Taylor&Francis, 1998. - 519 p.
Sesenin S.V., Fu M., Ivleva E.A. Ob osrednenii periodiceskih v plane plastin // Teoria i praktika rasceta zdanij, sooruzenij i elementov konstrukcij. Analiticeskie i cislennye metody. Mezdunarodnaa naucno-prakticeskaa konferencia. - M.: Izd-vo MGSU, 2008. - S. 148-158
Behrens A., Ellert J. FE-Analyse des witkmedienbasierten Wolbstrukturie-rungsprozesses von Feinblechen und seine Auswirkungen auf das Verhalten charakteristischer Leichtbauwerstucke. Forschungsvorhaben BE - Universitat der Baundeswehr Humburg, Institut fuer Konstruktions und Fertigungstec. V. 965, N. 8 - PP. 1-3.
Pobedra B.E. Mehanika kompozicionnyh materialov. - M.: Izd-vo MGU, 1984. - 336 s.
Zienkiewicz O.C., Taylor R.L. The finite eleent ethod. V. 1- Butterworth-Heinemann, 2000. - 712 p.
Braess D. Finite Elements. Theory, fast solvers and applications in solid mechanics. - Cambridge Univ. Press, 2007. - 308 p.

Published

2011-12-01

Issue

Section

Articles

How to Cite

Sheshenin, S. V., & Hodos, O. A. (2011). Effective stiffness of corrugated plate. Computational Continuum Mechanics, 4(2), 128-139. https://doi.org/10.7242/1999-6691/2011.4.2.20