Self-similarity mechanisms of damage growth in solids experiencing quasi-brittle fracture
DOI:
https://doi.org/10.7242/1999-6691/2011.4.1.8Keywords:
qualitative analysis of the differential equations, conception of structural-scaling transitions, damage localization, blow-up regimesAbstract
A phenomenological model and kinetic equations for two independent order parameters (defect density tensor and structure scaling parameter) have been constructed in the framework of the recently developed theory describing the behavior of solids with mesoscopic defects. The analysis of self-similar solutions of the constitutive relations has shown that there are two bifurcation points, one of which corresponds to a transition from plastic to quasi-brittle behavior. As it has been shown previously, in the vicinity of the bifurcation points the kinetic equation for the parameter of defect density has self-similar solutions of a singular type (blow-up regimes), i.e. the parameter of defect density approaches infinity in finite time. The method of averaging is used to analyze qualitatively the kinetic equation for the damage parameter, to determine the types of equilibrium points and characteristic patterns of the system behavior and to reveal the dependence of the amplitude and half-width coordinate of a solitary localized structure on the value of the applied stress and initial location of the system.
Downloads
References
Novozilov V.V. O perspektivah fenomenologiceskogo podhoda k probleme razrusenia // Mehanika deformiruemyh tel i konstrukcij. - M.: Masinostroenie. - 1975. - S. 349-359.
Kacanov L.M. O vremeni razrusenia v usloviah polzucesti // Izv. AN SSSR: OTH. - 1958. - No 8. -C. 26-31.
Rabotnov U.N. O mehanizme dlitel’nogo razrusenia // Vopr. procnosti materialov i konstrukcij. - M. - 1959. - S. 5-7.
Il’usin A.A. Ob odnoj teorii dlitel’noj procnosti // Izv. AN SSSR. MTT. - 1967. - No 3. - S. 21-35.
Murakami S., Radaev U.N. Matematiceskaa model’ trehmernogo anizotropnogo sostoania povrezdennosti // Izv. RAN. MTT. - 1996. - No 4. - S. 93-110.
Lubarda V.A., Krajcinovic D. Damage tensors and the crack density distribution // Int. J. Solids Struct. -1993. - V. 30, N. 20. - P. 2859-2877. DOI
Vil’deman V.E., Sokolkin U.V., Taskinov A.A. Mehanika neuprugogo deformirovania i razrusenia kompozicionnyh materialov / Pod red. U.V. Sokolkina. - M.: Nauka, 1997. - 288 s.
Najmark O.B. O deformacionnyh svojstvah i kinetike razrusenia tverdyh tel s mikrotresinami // O termodinamike i deformirovanii tverdyh tel s mikrotresinami : Preprint/ UNC AN SSSR. - Sverdlovsk, 1982. - S.3-34.
Najmark O.B. Kollektivnye svojstva ansamblej defektov i nekotorye nelinejnye problemy plasticnosti i razrusenia // Fizic. mezomeh. - 2003. - T. 6, No 4. - S. 45-72.
Bayandin Yu.V., Naimark O.B., Leont’ev V.A., Permjakov S.L. Experimental and theoretical study of universality of plastic wave fronts and structural scaling in shock loaded copper // J. Phys. IV: Proc. of 8th Int. conf. on mechanical and physical behavior of materials under dynamic loading. (Dijon, France, August 2006). - V. 134. - P. 1015-1021.
Kurdumov S.P. Sobstvennye funkcii gorenia nelinejnoj sredy i konstruktivnye zakony postroenia ee organizacii: Prepr. No29 / Institut prikl. matem. im. Keldysa. - M., 1979. - 30 s.
Nauka, tehnologia, vycislitel’nyj eksperiment. - M.: Nauka, 1993. - 149 s.
Rezimy s obostreniem. Evolucia idei: Zakony koevolucii sloznyh struktur. - M.: Nauka, 1998. - 255 s.
Plekhov. O.A. Modeling of stochastic properties of fast cracks in quasi-brittle materials // Computational Materials Science. - 2003. - V. 28, N. 3-4. - P. 462-468. DOI
Najmark O.B., Davydova M.M., Plehov O.A., Uvarov S.V. Eksperimental’noe i teoreticeskoe issledovanie dinamiceskoj stohasticnosti i skelinga pri rasprostranenii tresin // Fiziceskaa mezomehanika. - T. 2, N 3. - 1999. - S. 47-58.
Najmark O.B. Issledovanie vliania tresinoobrazovania na deformirovanie i razrusenie tverdyh tel // Fiziceskie osnovy procnosti i plasticnosti. - Gor’kij: GPI, 1985. - S. 55-60.
Najmark O.B., Davydova M.M. O statisticeskoj termodinamike tverdyh tel s mikrotresinami i avtomodel’nosti ustalostnogo razrusenia // Probl. procnosti. - 1986. - No 1. - S. 91-95.
Najmark O.B., Belaev V.V. Izucenie vliania mikrotresin na kinetiku povrezdennosti i struktura udarnyh voln v metallah // Probl. procnosti. - 1989. - No 7. - S. 46-53.
Najmark O.B., Belaev V.V. Kinetika nakoplenia mikrotresin i stadijnaa priroda processa razrusenia pri udarno-volnovom nagruzenii // Fizika gorenia i vzryva. - 1989. - T. 25, No 4. - S. 115-123.
Najmark O.B. Neustojcivosti v kondensirovannyh sredah, obuslovlennye defektami // PZETF. - 1998. - T. 67, No 9. - C. 714-722.
Nelinejnaa mehanika geomaterialov i geosred / Otv. red. L.B. Zuev - Novosibirsk: Akademiceskoe izd-vo <>. 2007. - 235 s.
Elenin G.G., Plohotnikov K.E. Ob odnom sposobe kacestvennogo issledovania odnomernogo kvazilinejnogo uravnenia teploprovodnosti s nelinejnym istocnikom tepla: Prepr. No 91 / Institut prikl. matem. im. Keldysa. - M., 1977. - 28 s.
Belavin V.A., Kurdumov S.P. Rezimy s obostreniem v demograficeskoj sisteme. Scenarij usilenia nelinejnosti // Z. vycisl. matem. i matem. fiz. - 2000. - T. 40, No 2. - S. 238-251.
Nikol’skij I.M. O rezimah s obostreniem v odnom nelinejnom paraboliceskom uravnenii // Vestn. mosk. un-ta. Ser. 15. Vycisl. matem. i kibern. - 2007. - No 4. - S. 25-32.
Downloads
Published
Issue
Section
License
Copyright (c) 2011 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.