Constitutive model of semicrystalline polymer material. Implementation algorithm for mezolevel model

Authors

  • Elena Sergeevna Nechaeva Perm State Technical University, Perm, Russia
  • Petr Valentinovich Trusov Perm State Technical University, Perm, Russia

DOI:

https://doi.org/10.7242/1999-6691/2011.4.1.7

Keywords:

constitutive multilevel model, internal variables, semicrystalline polymer, inelastic deformation

Abstract

The authors present a constitutive model of a semicrystalline polymer material. To construct the model, a multilevel approach based on the use of internal variables in its structure - the parameters characterizing the state and evolution of meso- and microstructure of the material - has been applied. The model is based on the description of the main deformation mechanisms for this class of materials at the meso level: the shear along the crystallographic slip systems in lamellae, the interlamellar shear, the mechanism of spatial separation-compression for lamellae, and the quasi-rigid motion of the elements of each scale level. The general structure of the constitutive model of a representative volume for a semicrystalline polymer material and the algorithm of the model realization at the meso level are described.

Downloads

Download data is not yet available.

References

Olejnik E.F. Plasticnost’ casticno-kristalliceskih gibkocepnyh polimerov na mikro- i mezourovnah // Vysokomolekularnye soedinenia. Seria S. - 2003. - T. 45, No 12. - S. 2137-2264.
Drozdov A.D., Christiansen J.deC. Cyclyc viscoplasticity of high-density polyethylene: Experiments and modeling // Computational Materials Science. - 2007. - V. 39. - P. 465-480. DOI
Regrain C., Laiarinandrasana L., Toillon S., Sai K. Multi-mechanism models for semi-crystalline polymer: constitutive relations and finite element implementation // Int. J. of Plasticity. - 2009. - V. 25. - P. 1253-1279. DOI
Zairi F., Aour B., Gloaguen J.M., Nait-Abdelaziz M., Lefebvre J.M. Numerical modeling of elastic-viscoplastic equal channel angular extrusion process of a polymer // Computational Materials Science. - 2006. - V. 38. - P. 202-216. DOI
Dusunceli N., Colak O.U. Modelling effects of degree of crystallinity on mechanical behavior of semicrystalline polymers // Int. J. of Plasticity. - 2008. - V. 24. - P. 1224-1242. DOI
Lai D., Yakimets I., Guigon M. A non-linear viscoelastic model developed for semi-crystalline polymer deformed at small strains with loading and unloading paths // Material Science and Engineering: A. - 2005. - V. 405. - P. 266-271. DOI
Morozov I.A., Svistkov A.L. Strukturno-fenomenologiceskaa model’ mehaniceskogo povedenia reziny // Meh. kompozic. materialov i konstrukcij. - 2008. - T. 14, No 4. - S. 583-596.
Svistkov A.L., Komar L.A. Modelirovanie relaksacionnyh processov v napolnennyh elastomernyh materialah // Vysokomolekularnye soedinenia. - 2005. - T. 47, No4. - S. 630-636.
Svistkov A.L. Kontinual’no-molekularnaa model’ formirovania oblastej orientirovannogo polimera v elastomernom nanokompozite // Izv. RAN. Mehanika tverdogo tela. - 2010. - No 4. - S. 82-96.
Garisin O.K., Mosev V.V. Strukturnaa perestrojka dispersno napolnennyh elastomernyh kompozitov i ee vlianie na mehaniceskie svojstva // Vysokomolekularnye soedinenia. - 2005. - T. 47, No4. - S. 669-675.
Bedoui F., Diani J., Regnier G., Seiler W. Micromechanical modeling of isotropic elastic behavior of semicrystalline polymers // Acta Materialia. - 2006. - V. 54. - P. 1513-1523. DOI
Van Dommelen J.A.W., Parks D.M., Boyce M.C., Brekelmans W.A.M., Baaijens F.P.T. Micromechanical modeling of intraspherulitic deformation of semicrystalline polymers // Polymer. - 2003. - V. 44. - P. 6089-6101. DOI
Nikolov S., Lebensohn R.A., Raabe D. Self-consistent modeling of large plastic deformation, texture and morphology evolution in semi-crystalline polymers // J. Mech. Phys. Solids. - 2006. - V. 54, No 7. - P. 1350-1375. DOI
Van Dommelen J.A.W., Parks D.M., M.C. Boyce, Brekelmans W.A.M., Baaijens F.P.T. Micromechanical modeling of the elasto-viscoplastic behavior of semi-crystalline polymers // J. Mech. Phys. Solids. - 2003. - V. 51. - P. 519-541. DOI
Fiziceskaa mezomehanika i komp’uternoe konstruirovanie materialov: V 2-h t. // Pod red. V.E. Panina. - Novosibirsk: Nauka, 1995. - T. 1. - 298s.
Fiziceskaa mezomehanika i komp’uternoe konstruirovanie materialov: V 2-h t. // Pod red. V.E. Panina. - Novosibirsk: Nauka, 1995. - T. 2. - 320s.
Trusov P.V., Asihmin V.N., Volegov P.S., Svejkin A.I. O fiziceskih teoriah plasticnosti i ih primenenii dla opisania evolucii mikrostruktury // Sovremennye problemy termovazkoplasticnosti: Trudy II skoly-seminara. - Moskva: MAMI, 2007. - S. 128-147.
Trusov P.V., Asihmin V.N., Volegov P.S., Svejkin A.I. Konstitutivnye sootnosenia i ih primenenie dla opisania evolucii mikrostruktury // Fiz. mezomeh. - 2009. - T. 12, No 3. - S. 61-71.
Trusov P.V., Asihmin V.N., Svejkin A.I. Dvuhurovnevaa model’ uprugoplasticeskogo deformirovania polikristallliceskih materialov // Meh. kompozic. materialov i konstrukcij. - 2009. - T. 15, No 3. - S. 327-344.
Van Houtte P., Li S., Seefeldt M., Delannay L. Deformation texture prediction: from the Taylor model to the advanced Lamel model // Int. J. Plasticity. - 2005. - V. 21. - P. 589-624. DOI
Lin L., Argon A.S. Structure and plastic deformation of polyethylene // J. Mater. Sci. - 1994. - V. 29, No 2. - P. 294-323. DOI

Published

2011-12-01

Issue

Section

Articles

How to Cite

Nechaeva, E. S., & Trusov, P. V. (2011). Constitutive model of semicrystalline polymer material. Implementation algorithm for mezolevel model. Computational Continuum Mechanics, 4(1), 74-89. https://doi.org/10.7242/1999-6691/2011.4.1.7