Numerical modeling of large deformations of elastoplastic solids in terms of logarithms of principal stretches
DOI:
https://doi.org/10.7242/1999-6691/2011.4.1.3Keywords:
finite deformations, multiplicative decomposition, logarithms of principal stretches, Prandtl-Reusse relations, method "predictor-corrector", linearized physical relationshipsAbstract
Numerical technique for solving the problem of large elastoplastic deformations of three-dimensional bodies based on the finite element method is proposed. The original variant of the multiplicative decomposition of the deformation gradient is used. Constitutive equations and the plastic flow law are formulated in terms of logarithms of principal stretches and have a scalar form. The solution of the problem is based on step-by-step loading with iteration refinement. The relationships for the Mises medium, necessary for calculations, are constructed. Separation of elastic and plastic deformations is realized using the implicit Euler integration scheme for plastic flow equations. A numerical example is presented.
Downloads
References
Golovanov A.I. Konecno-elementnoe modelirovanie bol’sih deformacij giperuprugih tel v terminah glavnyh udlinenij // Vycisl. meh. splos. sred. - 2009. - T. 2, No 1. - S. 19-37.
Kolarov D., Baltov A., Bonceva N. Mehanika plasticeskih sred. - M.: Mir, 1979. - 302 s.
Saharov A.S., Kislookij V.N., Kiricevskij V.V., Al’tenbah N., Gabbert U., Dankert U., Kepler H., Kocyk Z. Metod konecnyh elementov v mehanike tverdyh tel. - Kiev: Visa skola, 1982. - 480 s.
Trusov P.V., Svejkin A.I. Teoria opredelausih sootnosenij: C. II. Teoria plasticnosti. - Perm’: PGTU, 2008. - 243 s.
Korobejnikov S.N. Nelinejnoe deformirovanie tverdyh tel. - Novosibirsk, 2000. - 262 s.
Levitas V.I. Bol’sie uprugoplasticeskie deformacii materialov pri vysokom davlenii. - Kiev: Naukova dumka, 1987. - 232 s.
Pozdeev A.A., Trusov P.V., Nasin U.I. Bol’sie uprugoplasticeskie deformacii: teoria, algoritm, prilozenia. - M.: Nauka, 1986. - 232 s.
Golovanov A.I. Kinematika konecnyh uprugoplasticeskih deformacij // Izvestia vuzov. Matematika. - 2010. - No 7. - S. 16-31.
Golovanov A.I., Sultanov L.U. Matematiceskie modeli vycislitel’noj nelinejnoj mehaniki deformiruemyh sred. - Kazan’: Izd-vo Kazansk. gos. un-ta, 2009. - 465 s.
Simo J.S., Taylor R.L. Quasi-incompressible finite elasticity in principal stretches: continuum basis and numerical algorithms // Comput. Meth. Appl. Mech. Eng. - 1991. - V. 85. - P. 273-310. DOI
Simo J.S., Meschke G. A new class of algorithms for classical plasticity extended to finite strains. Application to geomaterials // Comput. Mech. - 1993. - V. 11. - P. 253-278. DOI
Betsch P., Stein E. Numerical implementation of multiplicative elasto-plasticity into assumed strain elements with application to shells at large strains // Comput. Meth. Appl. Mech. Eng. - 1999. - V. 179. - R. 215-245. DOI
Ibrahimbegovic A., Gharzeddin F. Finite deformation plasticity in principal axes: from a manifold to the Euclidean setting // Comput. Meth. Appl. Mech. Eng. - 1999. - V. 171. - P. 341-369. DOI
Ibrahimbegovic A., Chorfi L. Covariant principal axes formulation of associated coupled thermoplastisity at finite strains and its numerical implementation // Int. J. Solids Struct. - 2002. - V. 39. - P. 499-528. DOI
Rosati L., Varloso N. A return map algorithm for general isotropic elasto/visco-plastic materials in principal space // Int. J. Numer. Meth. Eng. - 2004. - V. 60. - P. 461-498. DOI
Golovanov A.I. Konecno-elementnoe modelirovanie bol’sih uprugoplasticeskih deformacij v terminah glavnyh udlinenij // Materialy Vtoroj Mezd. konf. <>. - Kazan’, 2009. - S. 125-127.
Chatti S., Dogui A., Dubujet P., Sidoroff F. An objective incremental formulation for the solution of anisotropic elastoplastic problems at finite strain // Commun. Numer. Meth. Eng. - 2001. - V. 17. - P. 845-862. DOI
Idesman A.V. Comparison of different isotropic elastoplastic models at finite strains used in numerical analysis // Comput. Meth. Appl. Mech. Eng. - 2003. - V. 192. - P. 4659-4674. DOI
Simo J.S., Ortiz M. A unified approach to finite deformation elastoplastic analysis lased on the use of hyperelastic constitutive equations // Comput. Meth. Appl. Mech. Eng. - 1985. - V. 49. - P. 221-245.20. DOI
Eterovic A.L., Bathe K.-J. A hyperelastic - based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures // Int. J. Numer. Meth. Eng. - 1990. - V. 30. - P. 1099-1114. DOI
Auricchio F., Taylor R.L. A return-map algorithm for general associative isotropic elasto-plastic materials in large deformation regimes // Int. J. Plasticity. - 1999. - V. 15. - P. 1359-1378. DOI
Rouainia M., Wood D.M. Computational aspects in finite strain plasticity analysis of geotechnical materials // Mech. Res. Commun. - 2006. - V. 33. - P. 123-133. DOI
Basar Y., Itskov M. Constitutive model and finite element formulation for large strain elasto-plastic analysis of shell // Comput. Mech. - 1999. - V. 23. - P. 466-481. DOI
Kukudzanov V.N. Metod rasseplenia uprugoplasticeskih uravnenij // Izv. RAN. MTT. - 2004. - No 1. - S. 98-108.
Kukudzanov V.N., Levitin A.L., Sinuk V.L. Cislenno-analiticeskij metod rasseplenia dla modelirovania kvazistaticeskih processov deformirovania povrezdausihsa materialov // Problemy procnosti i plasticnosti. - 2006. - Vyp. 70. - S. 7-21.
Golovanov A.I., Sultanov L.U. Bol’sie vazkouprugoplasticeskie deformacii trehmernyh tel // Ucenye zapiski Kazanskogo gosudarstvennogo universiteta. Seria fiziko-matematiceskie nauki. - 2005. - T. 147, kn. 3. - S. 75-89.
Golovanov A.I., Sultanov L.U. Cislennoe issledovanie bol’sih uprugoplasticeskih deformacij trehmernyh tel MKE // Prikladnaa mehanika. - 2005. - T. 41, No 6. - S. 36-43.
Simo J.S., Taylor R.L. Consistent tangent operators for rate-independent elastoplascticity // Comput. Meth. Appl. Mech. Eng. - 1985. - V. 48. - P. 101-118. DOI
Steinmann P., Miehe C., Stein E. Comparison of different finite deformation inelastic damage models within multiplicative elastoplasticity for ductile materials // Comput. Mech. - 1994. - V. 13. - P. 458-474. DOI
Meggyes A. Multiple decomposition in finite deformation theory // Acte Mech. - 2001. - V. 146. - P. 169-182. DOI
Schroder J., Gruttmann F., Loblein J. A simple orthotropic finite elasto-plasticity model based on generalized stress-strain measures // Comput. Mech. - 2002. - V. 30. - P. 48-64. DOI
Eidel B., Gruttmann F. Elastoplastic orthotropy at finite strains: multiplicative formulation and numerical implementation // Comput. Mater. Sci. - 2003. - V. 28. - P. 732-742. DOI
Downloads
Published
Issue
Section
License
Copyright (c) 2011 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.