Numerical analysis of stress singularities at the apex of a cone with unsmooth lateral surface

Authors

  • Tatyana Olegovna Korepanova Institute of Continuous Media Mechanics UB RAS
  • Valery Pavlovich Matveenko Institute of Continuous Media Mechanics UB RAS
  • Natalya Vital'evna Sevodina Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2010.3.3.28

Keywords:

stress singularity, conic bodies, finite-element method

Abstract

We consider two variants of construction of the eigensolutions of the linear theory of elasticity for a semi-infinite cone having generatrices on its lateral surface, where the surface smoothness is broken or where the boundary conditions are changed. This study presents numerical results concerning stress singularity indices at the apex of a circular cone with mixed boundary conditions on its lateral surface and for a cone with unsmooth lateral surface.

Downloads

Download data is not yet available.

References

Matveenko V.P., Nakarakova T.O., Sevodina N.V., Sardakov I.N. Singularnost’ naprazenij v versine odnorodnyh i sostavnyh konusov pri raznyh granicnyh usloviah // PMM. - 2008. - T. 72, vyp. 3. - S. 487-494.
Bazant Z.P. Three-dimensional harmonic functions near termination or intersection of gradient singularity lines: a general numerical method // Int. J. Eng. Sci. - 1974. - N. 12. - P. 221-243. DOI
Bazant Z.P., Estenssoro L.F. Surface singularity and crack propagation // Int. J. Solids Struct. - 1979. - N. 15. - P. 405-426. DOI
Chen L., Liu G.R., Nourbakhsh-Nia N., Zeng K. A singular edge-based smoothed finite element method (ES-FEM) for bimaterial interface cracks // Comput. Mech. - 2010. - V. 45. - P. 109-125. DOI
Wu Z., Liu Y. Asymptotic fields near an interface corner in orthotropic bi-materials. // Int. J. Fract. - 2009. -N. 156. - P. 37-51. DOI
Savruk M.P., Kazberuk A. Two-dimensional fracture mechanics problems for solids with sharp and rounded V-notches // Int. J. Fract. - 2010. - N. 161. - P. 79-95. DOI
Yosibash Z., Omer N., Costabel M., Douge M. Edge stress intensity functions in polyhedral domains and their extraction by a quasidual function method // Int. J. Fract. - 2005. - N. 136. - P. 37-73. DOI
Kondrat’ev V.A. Kraevye zadaci dla ellipticeskih uravnenij v oblastah s koniceskimi ili uglovymi tockami // Trudy Moskovskogo matematiceskogo obsestva. - 1967. - T. 16. - S. 209-292.
Mihajlov S.E. Singularnost’ naprazenij v okrestnosti rebra v sostavnom neodnorodnom anizotropnom tele i nekotorye prilozenia k kompozitam // Izv. AN SSSR. MTT. - 1979. - N. 5. -S. 103-110.
Timosenko S.P., Gud’er Dz. Teoria uprugosti. - M.: Nauka, 1975. - 575 s.
Strang G., Fix G. An analysis of fhe finite element method. - Englewood Cliffs NJ: Prentice-Hall, 1973. - 306 p.
Muller D.E. A method for solving algebraic equation using an automatic computer // Mathematical Table and Other Aids to Computation. - 1956. - N. 10. - P. 208-215. DOI
Lavrent’ev M.A., Sabat B.V. Metody teorii funkcij kompleksnogo peremennogo. - M.: Nauka, 1973. - 736 s.
Kozlov V.A., Maz’ya V.G., Rossmann J. Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations: Amer. Math. Soc., ser. Mathematical Surveys and Monographs. - N.J.: Providence RI, 2001. - V. 85. - 436 p.

Published

2010-10-01

Issue

Section

Articles

How to Cite

Korepanova, T. O., Matveenko, V. P., & Sevodina, N. V. (2010). Numerical analysis of stress singularities at the apex of a cone with unsmooth lateral surface. Computational Continuum Mechanics, 3(3), 68-76. https://doi.org/10.7242/1999-6691/2010.3.3.28