Modeling of two-phase filtration using "velocity-saturation" variables

Authors

  • Grigory Anatol'evich Nikiforov Institute of Mechanics and Engineering, Kazan Science Center RAS

DOI:

https://doi.org/10.7242/1999-6691/2010.3.2.19

Keywords:

porous media, two-phase flow, control volume, WENO scheme

Abstract

In this paper, we propose a numerical method for solving the problem of a two-phase immiscible flow in porous media in terms of velocity-saturation variables. The velocity equations are solved by a standard control-volume method on a rectangular grid. The saturation equation is solved using an explicit weighted essentially non-oscillatory (WENO) scheme with the Runge-Kutta time discretization. It is shown that the solution is in good agreement with the experimental results obtained by R.A Dawe and C.A. Grattoni.

Downloads

Download data is not yet available.

References

Konovalov A.N. Zadaci fil’tracii mnogofaznoj neszimaemoj zidkosti. - Novosibirsk: Nauka, 1988. - 166 c.
Fletcer R. Cislennye metody na osnove metoda Galerkina. - M.: Mir, 1988. - 352 s.
Li B., Chen Z., Huan G. Control volume function approximation methods and their applications to modeling porous media flow // Advances in Water Resources. - 2003. - V. 26. - P. 435-444. DOI
Taniguchi N., Kobayashi T. Finite volume method on the unstructured grid system // Computers Fluids. - 1991. - V. 19, N. 3/4. - P. 287-295. DOI
Samarskij A.A. Vvedenie v teoriu raznostnyh shem. - M.: Nauka, 1971. - 552 c.
Chi-Wang Shu. High-order finite difference and finite volume WENO schemes and discontinuous galerkin methods for CFD // Int. J. Computational Fluid Dynamics. - 2003. - V. 17, N. 2. - P. 107-118. DOI
Huber R., Helmig R. Node-centered finite volume discretizations for the numerical simulation of multiphase flow in heterogeneous porous media // Computational Geosciences. - 2000. - V. 4. - P. 141-164. DOI
Barenblatt G.I., Entov V.M., Ryzik V.M. Dvizenie zidkostej i gazov v prirodnyh plastah. - M.: Nedra, 1984. - 207 s.
Nikiforov A.I. Ob uravneniah dvuhfaznoj fil’tracii neszimaemyh zidkostej // Cislennye metody resenia zadac fil’tracii i optimizacii neftedobyci. - Kazan’, 1990. - S. 75-78.
Nikiforov G.A. Primenenie metoda kontrol’nyh ob"emov dla resenia zadac dvuhfaznoj fil’tracii v peremennyh <> // Vycislitel’nye metody i programmirovanie. - 2006. - T. 7. - S. 224-228.
Shu C.-W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws // NASA/CR-97-206253. ICASE Report. - 1997. - N. 97-65. - 78 p.
Kulikovskij A.G., Pogorelov N.V., Semenov A.U. Matematiceskie voprosy cislennogo resenia giperboliceskih sistem uravnenij. - M.: Fizmatlit, 2001. - 608 s.
Dawe R.A., Grattoni C.A. Experimental displacement patterns in a 2*2 quadrant block with permeability and wettability heterogeneities - problems for numerical modeling // Transp. Porous Med. - 2008. - V. 71. - P. 5-22. DOI

Published

2010-10-01

Issue

Section

Articles

How to Cite

Nikiforov, G. A. (2010). Modeling of two-phase filtration using "velocity-saturation" variables. Computational Continuum Mechanics, 3(2), 83-92. https://doi.org/10.7242/1999-6691/2010.3.2.19