Discretization of an admixture flux within the framework of a fractal mim model for anomalous diffusion
DOI:
https://doi.org/10.7242/1999-6691/2010.3.2.18Keywords:
fractional derivatives, anomalous diffusion, conservative methods, filtrationAbstract
The mapping for admixture flux is obtained within the framework of the fractal mobile-immobile model (MIM) describing the non-Fickian effects arising in the admixture filtration process and related to the sticking of particles to the solid matrix. The discretization of the flux for calculations by finite-difference methods is suggested and the conservative scheme for the solution of equations is worked out to take into account the admixture sources. A number of one-dimensional test problems on the admixture transport in the imposed filtrational flow are solved based on the proposed approach.
Downloads
References
Scher H., Lax M. Stochastic transport in a disordered solid. I. Theory // Phys. Rev. B. - 1973. - V. 7, No 10. - R. 4491-4501. DOI
Scher H., Lax M., Stochastic transport in a disordered solid. II. Theory // Phys. Rev. B. - 1973. - V. 7, No 10. - P. 4502-4512. DOI
Mainardi F., Luchko Y., Pagnini G. The fundamental solution of the space-time fractional diffusion equation // Fractional Calculus & Applied Analysis. - 2001. - V. 4, No. 2. - P. 153-192. DOI
Metzler R., Klafter J. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics // J. Phys. A. - 2004. - V. 37. - P. 161-208. DOI
Scalas E., Gorenflo R., Mainardi F. Uncoupled continuous-time random walks: Solution and limiting behavior of the master equation // Phys. Rev E. - 2004. - V. 69. - P. 011107/1-8. DOI
Zhang Y., Benson D.A., Meerschaert M.M., Scheffler H.P. On using random walks to solve the space-fractional advection-dispersion equations // J. Stat. Phys. - 2006. - V. 123, No 1. - P. 89-110. DOI
Lutsko J.F., Boon J.P. Generalized diffusion: a microscopic approach // Phys. Rev. E. - 2004. - V. 77. - P. 051103/1-13. DOI
Einstein. A. Investigations on the theory of Brownian movement. - New York: Dover, 1956. - 549 p.
Metzler R., Klafter J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach // Physics Reports. - 2000. - V. 339. - P. 1-76. DOI
Meerschaert M.M., Scheffler H.P. Limit theorems for continuous-time random walks with infinite mean waiting times // J. Appl. Probab. - 2004. - V. 41, No 3. - P. 623-638. DOI
Feller W. An introduction to probability theory and its applications. - London: Addison-Wessley pub. company, 1968. - V. 2. - 297 p.
Gnedenko B.V., Kolmogorov A.N. Limit distributions for sums of independent variables. - New York: Wiley and sons, 1971. - 704 p.
Levy P. Theorie de l’addition des variables aleatoires. - Paris: Gauthier-Villars, 1937. - 328 p.
Meerschaert M.M., Scheffler H.P. Limit distributions for sums of independent random vectors // Heavy tails in theory and practice. - New York: Wiley and sons, 2001. - 512 p.
Zhang Y., Benson D.A., Bauemer B. Moment analysis for spatiotemporal fractional dispersion // Water Resour. Res. - 2008. - V. 44. - P. W04424/1-12.
Bromly M., Hinz C. Non-Fickian transport in homogeneous unsaturated repacked sand // Water Resour. Res. - 2004. - V. 40. - P. W07402/1-13. DOI
Cortis A., Chen Y., Scher H., Berkowitz B. Quantitative characterization of pore-scale disorder effects on transport in "homogeneous" granular media // Phys. Rev. E. - 2004. - V. 70. - P. 041108/1-8. 1. DOI
Jacobs A.B. Transport bacterien en milieu poreux, modelisation et application aux cas, d’epandage d’effluents. - Avignon: PhD University of Avignon, 2007. - 216 p.
Schumer R., Benson D.A., Meerschaert M.M., Bauemer B. Fractal mobile/immobile solute transport // Water Resour. Res. - 2003. - V. 39. - P. W01296/1-10.
Van Genuchten M.T., Wierenga P.J. Mass transfer studies in sorbing porous media. I. Analytical solutions // Soil. Sci. Soc. Am. J. - 1976. - V. 40. - P. 473-480. DOI
Zaslavsky G. Fractional kinetic equation for Hamiltonian chaos // Phys. D. - 1994. - V. 76. - P. 110-122. DOI
Magdziarz M., Weron A., Weron K. Fractional Fokker-Planck dynamics: stochastic representation and computer simulation// Phys. Rev. E. - 2007. - V. 75. - P. 016708/1-6. DOI
Levi P., Stohasticeskie processy i brounovskoe dvizenie, per. s franc. - M.: Nauka, 1972. - 375 c.
Gorenflo R., Mainardi F. Integral and differential equations of fractional order // CISM lecture notes . - 1997. - No. 378. - P. 223-274.
Bromly M., Hinz Ch. Non-Fickian transport in homogeneous unsaturated repacked sand // SuperSoil 2004: 3rd Australian New Zealand Soils Conference (5-9 December 2004, University of Sydney, Australia). - Published on CD ROM
Li X., Scheibe T.D., Johnson W.P. Apparent decreases in colloid disposition rate coefficients with distance of transport under unfavorable disposition conditions: a general phenomenon // Environ. Sci. Technol. - 2004. - V. 38. - P. 5616-5625. DOI
Ditkin V.A., Prudnikov A.P. Integral’nye preobrazovania i operacionnoe iscislenie. - M.: Fizmatgiz, 1961. - 524 c.
Samarskij A.A., Gulin A.V. Cislennye metody. - M.: Nauka, 1989. - 432 c.
Downloads
Published
Issue
Section
License
Copyright (c) 2010 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.