Discretization of an admixture flux within the framework of a fractal mim model for anomalous diffusion

Authors

  • Boris Sergeevich Maryshev Institute of Continuous Media Mechanics UB RAS
  • Tatiana Petrovna Lyubimova Institute of Continuous Media Mechanics UB RAS
  • Dmitry Victorovich Lyubimov Perm State University
  • Marie-Christine Néel Univerisité d'Avignon et des Pays de Vaucluse

DOI:

https://doi.org/10.7242/1999-6691/2010.3.2.18

Keywords:

fractional derivatives, anomalous diffusion, conservative methods, filtration

Abstract

The mapping for admixture flux is obtained within the framework of the fractal mobile-immobile model (MIM) describing the non-Fickian effects arising in the admixture filtration process and related to the sticking of particles to the solid matrix. The discretization of the flux for calculations by finite-difference methods is suggested and the conservative scheme for the solution of equations is worked out to take into account the admixture sources. A number of one-dimensional test problems on the admixture transport in the imposed filtrational flow are solved based on the proposed approach.

Downloads

Download data is not yet available.

References

Scher H., Lax M. Stochastic transport in a disordered solid. I. Theory // Phys. Rev. B. - 1973. - V. 7, No 10. - R. 4491-4501. DOI
Scher H., Lax M., Stochastic transport in a disordered solid. II. Theory // Phys. Rev. B. - 1973. - V. 7, No 10. - P. 4502-4512. DOI
Mainardi F., Luchko Y., Pagnini G. The fundamental solution of the space-time fractional diffusion equation // Fractional Calculus & Applied Analysis. - 2001. - V. 4, No. 2. - P. 153-192. DOI
Metzler R., Klafter J. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics // J. Phys. A. - 2004. - V. 37. - P. 161-208. DOI
Scalas E., Gorenflo R., Mainardi F. Uncoupled continuous-time random walks: Solution and limiting behavior of the master equation // Phys. Rev E. - 2004. - V. 69. - P. 011107/1-8. DOI
Zhang Y., Benson D.A., Meerschaert M.M., Scheffler H.P. On using random walks to solve the space-fractional advection-dispersion equations // J. Stat. Phys. - 2006. - V. 123, No 1. - P. 89-110. DOI
Lutsko J.F., Boon J.P. Generalized diffusion: a microscopic approach // Phys. Rev. E. - 2004. - V. 77. - P. 051103/1-13. DOI
Einstein. A. Investigations on the theory of Brownian movement. - New York: Dover, 1956. - 549 p.
Metzler R., Klafter J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach // Physics Reports. - 2000. - V. 339. - P. 1-76. DOI
Meerschaert M.M., Scheffler H.P. Limit theorems for continuous-time random walks with infinite mean waiting times // J. Appl. Probab. - 2004. - V. 41, No 3. - P. 623-638. DOI
Feller W. An introduction to probability theory and its applications. - London: Addison-Wessley pub. company, 1968. - V. 2. - 297 p.
Gnedenko B.V., Kolmogorov A.N. Limit distributions for sums of independent variables. - New York: Wiley and sons, 1971. - 704 p.
Levy P. Theorie de l’addition des variables aleatoires. - Paris: Gauthier-Villars, 1937. - 328 p.
Meerschaert M.M., Scheffler H.P. Limit distributions for sums of independent random vectors // Heavy tails in theory and practice. - New York: Wiley and sons, 2001. - 512 p.
Zhang Y., Benson D.A., Bauemer B. Moment analysis for spatiotemporal fractional dispersion // Water Resour. Res. - 2008. - V. 44. - P. W04424/1-12.
Bromly M., Hinz C. Non-Fickian transport in homogeneous unsaturated repacked sand // Water Resour. Res. - 2004. - V. 40. - P. W07402/1-13. DOI
Cortis A., Chen Y., Scher H., Berkowitz B. Quantitative characterization of pore-scale disorder effects on transport in "homogeneous" granular media // Phys. Rev. E. - 2004. - V. 70. - P. 041108/1-8. 1. DOI
Jacobs A.B. Transport bacterien en milieu poreux, modelisation et application aux cas, d’epandage d’effluents. - Avignon: PhD University of Avignon, 2007. - 216 p.
Schumer R., Benson D.A., Meerschaert M.M., Bauemer B. Fractal mobile/immobile solute transport // Water Resour. Res. - 2003. - V. 39. - P. W01296/1-10.
Van Genuchten M.T., Wierenga P.J. Mass transfer studies in sorbing porous media. I. Analytical solutions // Soil. Sci. Soc. Am. J. - 1976. - V. 40. - P. 473-480. DOI
Zaslavsky G. Fractional kinetic equation for Hamiltonian chaos // Phys. D. - 1994. - V. 76. - P. 110-122. DOI
Magdziarz M., Weron A., Weron K. Fractional Fokker-Planck dynamics: stochastic representation and computer simulation// Phys. Rev. E. - 2007. - V. 75. - P. 016708/1-6. DOI
Levi P., Stohasticeskie processy i brounovskoe dvizenie, per. s franc. - M.: Nauka, 1972. - 375 c.
Gorenflo R., Mainardi F. Integral and differential equations of fractional order // CISM lecture notes . - 1997. - No. 378. - P. 223-274.
Bromly M., Hinz Ch. Non-Fickian transport in homogeneous unsaturated repacked sand // SuperSoil 2004: 3rd Australian New Zealand Soils Conference (5-9 December 2004, University of Sydney, Australia). - Published on CD ROM
Li X., Scheibe T.D., Johnson W.P. Apparent decreases in colloid disposition rate coefficients with distance of transport under unfavorable disposition conditions: a general phenomenon // Environ. Sci. Technol. - 2004. - V. 38. - P. 5616-5625. DOI
Ditkin V.A., Prudnikov A.P. Integral’nye preobrazovania i operacionnoe iscislenie. - M.: Fizmatgiz, 1961. - 524 c.
Samarskij A.A., Gulin A.V. Cislennye metody. - M.: Nauka, 1989. - 432 c.

Published

2010-10-01

Issue

Section

Articles

How to Cite

Maryshev, B. S., Lyubimova, T. P., Lyubimov, D. V., & Néel, M.-C. . (2010). Discretization of an admixture flux within the framework of a fractal mim model for anomalous diffusion. Computational Continuum Mechanics, 3(2), 70-82. https://doi.org/10.7242/1999-6691/2010.3.2.18