Presure driven flow of a nonlinear viscoelastic fluid in a plane channel

Authors

  • Julia Leonidovna Kuznetsova Institute of Continuous Media Mechanics
  • Oleg Ivanovich Skul'skiy Institute of Continuous Media Mechanics
  • Grigory Vladimirovich Pyshnograi Altai State Technical University

DOI:

https://doi.org/10.7242/1999-6691/2010.3.2.17

Keywords:

non-linear viscoelastic fluid, flow in a plane channel, analytical and numerical solution, normal and tangential discontinuities, hysteresis

Abstract

The pressure-driven flow of a non-linear viscoelastic fluid characterized by a tensor internal parameter in a plane channel is studied. A full set of exact analytical solutions to this problem obtained in a parametric form is presented. The solutions have been analyzed to identify physically inadmissible solutions. The distributions of anisotropy tensor components, the flow velocity and the velocity gradient throughout the height of the channel have been obtained for different parameters of the rheological model. It is shown that the pressure drops exceeding critical values lead to ambiguity of the solutions, which manifests itself as discontinuities in the profiles of the components of the anisotropy tensor. The same problem has been solved for a two-dimensional case using the finite element method. A comparison of the numerical and analytical results has shown that under subcritical conditions the results agree well. Under supercritical conditions, the analytical solution has discontinuities, whereas the numerical solution is continuous for normal components of the anisotropy tensor and gives underestimated values of the longitudinal velocity in the regime of active loading and overestimated values in the case of unloading. The flow rate - pressure drop characteristics are of a hysteresis character.

Downloads

Download data is not yet available.

References

Truesdell C., Noll W. The non-linear field theories of mechanics. - Berlin: Springer-Verlag, 2004. - 627 p.
Coleman B.D. Kinematical concepts with applications in the mechanics and thermodynamics of incompressible viscoelastic fluids // Arch. Rat. Mech. Anal. - 1962. - V. 9: - P. 273-300.
Dunn J.E., Fosdick R.L. Thermodynamics, stability and boundedness of fluids of complexity 2 and fluids of second grade // Arch. Rat. Mech. Anal. - 1974. - V. 56: - P. 191-252. DOI
Astarita Dz., Marrucci Dz. Osnovy gidromehaniki nen’utonovskih zidkostej. - M. Mir, 1978. - 309 s.
Andrejcenko U.A., Brutan M.A., Obrazcov I.F., Anovskij U.G. Spurt-effekt dla vazkouprugih zidkostej v 4-konstantnoj modeli Oldrojda // Dokl. AN. - 1997. - T. 32, No 3. - S. 327-330.
Aristov S.N., Skul’skij O.I. Tocnoe resenie zadaci tecenia sestikonstantnoj modeli zidkosti Dzeffrisa v ploskom kanale // Prikl. meh. i tehnic. fizika. - 2002. - T. 43, No 6. - S. 39-45.
Aristov S.N., Skul’skij O.I. Tocnoe resenie zadaci tecenia rastvora polimera v ploskom kanale // Inzenerno-fiziceskij zurnal. - 2003. - T. 76, No 3. - S. 88-95.
Pysnograj G.V., Pokrovskij V.N., Anovskij U.G., Karnet U.N., Obrazcov I.F. Opredelausee uravnenie nelinejnyh vazkouprugih (polimernyh) sred v nulevom priblizenii po parametram molekularnoj teorii i sledstvia dla sdviga i rastazenia // Dokl. AN. - 1994. - T. 339, No 5. - C. 612-615.
Altuhov U.A., Gusev A.S., Makarova M.A., Pysnograj G.V. Obobsenie zakona Puazejla dla ploskoparallel’nogo tecenia vazkouprugih sred // Mehanika kompozicionnyh materialov i konstrukcij. - 2007. - No 4. - S. 581-590.
Gusev A.S., Pysnograj I.G., Pysnograj G.V., Armolinskaa V.V. Ob opredelenii pola skorostej polimernoj zidkosti v ploskoparallel’nom tecenii // EFTZ. - 2008. - T. 3. - S. 6-16.
Pyshnograi G.V., Gusev A.S., Pokrovskii V.N. Constitutive equations for weakly entangled linear polymers // J. of Non-Newtonian Fluid Mech. - 2009. - V. 163, N. 1. - 3. - P. 17-28. DOI

Published

2010-10-01

Issue

Section

Articles

How to Cite

Kuznetsova, J. L., Skul’skiy, O. I., & Pyshnograi, G. V. (2010). Presure driven flow of a nonlinear viscoelastic fluid in a plane channel. Computational Continuum Mechanics, 3(2), 55-69. https://doi.org/10.7242/1999-6691/2010.3.2.17