Verification of the finite-element solution of 3d non-stationary problems of elasto-plastic deformation, stability and supercritical behavior of shells

Authors

  • Anastasia Anatol'evna Artemjeva Research Institute of Mechanics, Nizhny Novgorod Lobatchevsky State University
  • Valentin Georgievich Bazhenov Research Institute of Mechanics, Nizhny Novgorod Lobatchevsky State University
  • Alexander Ivanovich Kibetz Research Institute of Mechanics, Nizhny Novgorod Lobatchevsky State University
  • Pavel Vladimirovich Laptev Research Institute of Mechanics, Nizhny Novgorod Lobatchevsky State University
  • Dmitry Victorovich Shoshin Research Institute of Mechanics, Nizhny Novgorod Lobatchevsky State University

DOI:

https://doi.org/10.7242/1999-6691/2010.3.2.12

Keywords:

finite-element method, verification, elasto-plasticity, non-stationary problems, shells

Abstract

FEM technique is used to analyze the quasi-static and dynamic processes of elasto-plastic deformation, stability loss and supercritical behavior of thin-walled shell structures in three-dimensional formulation. The effectiveness of the proposed approach has been verified in numerical experiments.

Downloads

Download data is not yet available.

References

Golovanov A.I., Tuleneva O.N., Sigabutdinov A.F. Metod konecnyh elementov v statike i dinamike tonkostennyh konstrukcij. - M.: FIZMATLIT, 2006. - 391 s.
Belytschko T., Liu W.K., Moran B. Nonlinear finite elements for continua and structures. - New York: John Wiley & Sons, 2000. - 600 p.
Bathe K.-Y. Finite element procedures. - New Jersey: Upper Saddle River <>, 1996. - 1037p.
Zienkievicz O.C., Taylor R.L. The finite element method. - Oxford: Butterworth-Heinemann, 2000. - V. 1. - 689 p.; V. 2. - 459 p.
Pozdeev A.A., Trusov P.V., Nasin U.I. Bol’sie uprugoplasticeskie deformacii: teoria, algoritmy, prilozenia. - M.: Nauka, 1986. - 232 s.
Korobejnikov S.N. Nelinejnoe deformirovanie tverdyh tel. - Novosibirsk: Izd-vo SO RAN, 2000. - 262 s.
Bazenov V.G., Kibec A.I., Cvetkova I.N. Cislennoe modelirovanie nestacionarnyh processov udarnogo vzaimodejstvia deformiruemyh elementov konstrukcij // Problemy masinostroenia i nadeznosti masin, 1995. - No 2. - S. 20-26.
Vol’mir A.S. Nelinejnaa dinamika plastin i obolocek. - M.: Nauka, 1972. - 432 s.
Flanagan D.P., Belytschko T. A Uniform strain hexahedron and quadrilateral with orthogonal hourglass control // Int. J. Numer. Meth. Eng., 1981. - V. 17. - P. 679-706. DOI
Uilkins M., Frenc S., Sorem M. Konecno-raznostnaa shema dla resenia zadac, zavisasih ot treh prostranstvennyh koordinat i vremeni // Cislennye metody v mehanike zidkostej. - M.: Mir, 1973. - S. 115-119.
Korobejnikov S.N., Sutov A.V. Vybor otscetnoj poverhnosti v uravneniah plastin i obolocek // Vycislitel’nye tehnologii, 2003. - T. 8, No 6. - S. 38-59.
Metod konecnyh elementov v mehanike tverdyh tel / Pod red. A.S. Saharova i I. Al’tenbaha. - Kiev: Visa skola; Lejpcig: FEB Fahbuhferlag, 1982. - 480 s.
Programmnyj produkt <> (PPP <>) : Sertifikat sootvetstvia Gosstandarta Rossii No ROSS RU.ME20.H00338 / 2000.
Bazenov V.G., Lomunov V.K. Eksperimental’no-teoreticeskoe issledovanie uprugoplasticeskogo vypucivania cilindriceskih obolocek pri osevom udare // Prikladnaa mehanika, 1983. - T. 19, No 6. - S. 63-69.
Abakumov A.I., Kvaskov G.A., Novikov S.A., Sinicyn V.A., Ucaev A.A. Issledovanie uprugoplasticeskogo deformirovania cilindriceskih obolocek pri osevom udare // PMTF, 1988. - No 3. - S. 150-153.
Korobejnikov S.N. Cislennoe resenie uravnenij s osobennostami deformirovania uprugoplasticeskih obolocek vrasenia // Vycislitel’nye tehnologii, 2001. - T. 6, No 5. - S. 39-59.
Demenko P.V. Ustanovka dla dinamiceskih ispytanij strukturno-neodnorodnyh materialov na osnove razreznogo sterzna Gopkinsona diametrom 60 mm // Problemy procnosti i plasticnosti. - N. Novgorod, 2001. - Vyp. 63. - S. 186-190.
Zeng Q., Combescure A. A new one-point quadrature, general non-linear quadrilateral shell element with physical stabilization // Int. J. Numer. Meth. Eng., 1998. - N. 42. - P. 1307-1338. DOI

Published

2010-10-01

Issue

Section

Articles

How to Cite

Artemjeva, A. A., Bazhenov, V. G., Kibetz, A. I., Laptev, P. V., & Shoshin, D. V. (2010). Verification of the finite-element solution of 3d non-stationary problems of elasto-plastic deformation, stability and supercritical behavior of shells. Computational Continuum Mechanics, 3(2), 5-14. https://doi.org/10.7242/1999-6691/2010.3.2.12