Verification of the finite-element solution of 3d non-stationary problems of elasto-plastic deformation, stability and supercritical behavior of shells
DOI:
https://doi.org/10.7242/1999-6691/2010.3.2.12Keywords:
finite-element method, verification, elasto-plasticity, non-stationary problems, shellsAbstract
FEM technique is used to analyze the quasi-static and dynamic processes of elasto-plastic deformation, stability loss and supercritical behavior of thin-walled shell structures in three-dimensional formulation. The effectiveness of the proposed approach has been verified in numerical experiments.
Downloads
References
Golovanov A.I., Tuleneva O.N., Sigabutdinov A.F. Metod konecnyh elementov v statike i dinamike tonkostennyh konstrukcij. - M.: FIZMATLIT, 2006. - 391 s.
Belytschko T., Liu W.K., Moran B. Nonlinear finite elements for continua and structures. - New York: John Wiley & Sons, 2000. - 600 p.
Bathe K.-Y. Finite element procedures. - New Jersey: Upper Saddle River <>, 1996. - 1037p.
Zienkievicz O.C., Taylor R.L. The finite element method. - Oxford: Butterworth-Heinemann, 2000. - V. 1. - 689 p.; V. 2. - 459 p.
Pozdeev A.A., Trusov P.V., Nasin U.I. Bol’sie uprugoplasticeskie deformacii: teoria, algoritmy, prilozenia. - M.: Nauka, 1986. - 232 s.
Korobejnikov S.N. Nelinejnoe deformirovanie tverdyh tel. - Novosibirsk: Izd-vo SO RAN, 2000. - 262 s.
Bazenov V.G., Kibec A.I., Cvetkova I.N. Cislennoe modelirovanie nestacionarnyh processov udarnogo vzaimodejstvia deformiruemyh elementov konstrukcij // Problemy masinostroenia i nadeznosti masin, 1995. - No 2. - S. 20-26.
Vol’mir A.S. Nelinejnaa dinamika plastin i obolocek. - M.: Nauka, 1972. - 432 s.
Flanagan D.P., Belytschko T. A Uniform strain hexahedron and quadrilateral with orthogonal hourglass control // Int. J. Numer. Meth. Eng., 1981. - V. 17. - P. 679-706. DOI
Uilkins M., Frenc S., Sorem M. Konecno-raznostnaa shema dla resenia zadac, zavisasih ot treh prostranstvennyh koordinat i vremeni // Cislennye metody v mehanike zidkostej. - M.: Mir, 1973. - S. 115-119.
Korobejnikov S.N., Sutov A.V. Vybor otscetnoj poverhnosti v uravneniah plastin i obolocek // Vycislitel’nye tehnologii, 2003. - T. 8, No 6. - S. 38-59.
Metod konecnyh elementov v mehanike tverdyh tel / Pod red. A.S. Saharova i I. Al’tenbaha. - Kiev: Visa skola; Lejpcig: FEB Fahbuhferlag, 1982. - 480 s.
Programmnyj produkt <> (PPP <>) : Sertifikat sootvetstvia Gosstandarta Rossii No ROSS RU.ME20.H00338 / 2000.
Bazenov V.G., Lomunov V.K. Eksperimental’no-teoreticeskoe issledovanie uprugoplasticeskogo vypucivania cilindriceskih obolocek pri osevom udare // Prikladnaa mehanika, 1983. - T. 19, No 6. - S. 63-69.
Abakumov A.I., Kvaskov G.A., Novikov S.A., Sinicyn V.A., Ucaev A.A. Issledovanie uprugoplasticeskogo deformirovania cilindriceskih obolocek pri osevom udare // PMTF, 1988. - No 3. - S. 150-153.
Korobejnikov S.N. Cislennoe resenie uravnenij s osobennostami deformirovania uprugoplasticeskih obolocek vrasenia // Vycislitel’nye tehnologii, 2001. - T. 6, No 5. - S. 39-59.
Demenko P.V. Ustanovka dla dinamiceskih ispytanij strukturno-neodnorodnyh materialov na osnove razreznogo sterzna Gopkinsona diametrom 60 mm // Problemy procnosti i plasticnosti. - N. Novgorod, 2001. - Vyp. 63. - S. 186-190.
Zeng Q., Combescure A. A new one-point quadrature, general non-linear quadrilateral shell element with physical stabilization // Int. J. Numer. Meth. Eng., 1998. - N. 42. - P. 1307-1338. DOI
Downloads
Published
Issue
Section
License
Copyright (c) 2010 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.