Application of numerical simulation for identification of Johnson-Cook material model parameters for aluminum under high-speed loading
DOI:
https://doi.org/10.7242/1999-6691/2010.3.1.4Keywords:
finite element method, spall, Johnson-Cook model, Mie-Gruneisen EOS, fractureAbstract
The problem of identification of the parameters of the Johnson-Cook material model with the Mie-Gruneisen equation of state (EOS) is studied. Finite element modeling of high-speed impact of two aluminum plates is carried out using the LS-DYNA code. The time-dependence of the free surface velocity of the target is obtained. The influence of material parameters (percussive adiabat slope, hardening, viscosity) on this dependence is investigated. The parameters are chosen so that they fit the known experimental data. Very good agreement between experimental and numerical results is achieved.
Downloads
References
Udarnye volny i ekstremal’nye sostoania vesestva / Pod red. V.E. Fortova, L.V. Al’tsulera, R.F. Trunina, A.I. Funtikova. - M.: Nauka, 2000. - 425c.
Kanel’ G.I., Razorenov S.V., Utkin A.V., Fortov V.E. Udarno-volnovye avlenia v kondensirovannyh sredah. - M.: Izd-vo Anus-K, 1996. - 408c.
Glusak B.L., Kuropatenko V.F., Novikov S.A. Issledovanie procnosti materialov pri dinamiceskih nagruzkah. - Novosibirsk: Nauka SO, 1992. - 295s.
Johnson G.R., Cook W.H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures // Proc. of 7th Symposium on Ballistics, Hague, Netherlands, 1983. - P. 541-547.
Ozel T., Karpat Y. Identification of constitutive material model parameters for high-strain rate metal cutting conditions using evolutionary computational algorithms // Materials and Manufacturing Processes, 2007. - V. 22. - P. 659-667. DOI
Loikkanen M.J., Buyuk M., Kan C., Meng N. A computational and experimental analysis of ballistic impact to sheet metal aircraft structures // Proc. of 5th European LS-DYNA Users Conference (Birmingham, UK, 2005). CD-ROM format. - Article 3c-79.
Gryttena F., Borvik T., Hopperstada O.S., Langsetha M. Quasi-static perforation of thin aluminum plates // Int. J. Imp. Eng. - 2009. - V. 36. - P. 486-497. DOI
Templeton D.W., Gorsich T.J., Holmquist T.J. Computational study of a functionally graded ceramic-metallicarmor // Proc. of 23rd International Symposium on Ballistics, 2007. - P. 1165-1163.
Gallager R. Metod konecnyh elementov. Osnovy. Per. s angl. - M.: Mir, 1984. - 428s.
Hallquist J.O. LS-DYNA: Theoretical manual. Livermore Software Technology Corporation, Livermore, 1998. - 498p.
Kanel’ G.I., Razorenov S.V., Utkin A.V., Fortov V.E. Eksperimental’nye profili udarnyh voln v kondensirovannyh vesestvah. - M.: Fizmatlit, 2008. - 248s.
Al’tsuller L.V. Primenenie udarnyh voln v fizike vysokih davlenij // UFN. - 1965. - T. 85, vyp. 2. - S. 197-258.
Sun J.S., Lee K.H., Lee H.P. Comparison of implicit and explicit finite element methods for dynamic problems // Journal of Material Processing Technology. - 2000. V. 105. - P. 110-118. DOI
Holian B.L. Atomic computer simulations of shock waves // Shock waves. - 1995. - V. 5. - P. 149-157. DOI
Downloads
Published
Issue
Section
License
Copyright (c) 2010 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.