Theory of nonlinear waves in solids undergoing strong rearrangements of their crystalline structure
DOI:
https://doi.org/10.7242/1999-6691/2009.2.4.30Keywords:
nonlinear wave, solids, defects, crystalline structureAbstract
The nonlinear theory of propagation of nonlinear localized waves (like kinks and solitons), connected with the movement of defects in crystals, is developed. It is assumed that crystals possess a complicated lattice consisting of two sub-lattices. The arbitrary large displacements of sub-lattices, , are considered. An additional element of translational symmetry is employed in the theory. The element is typical for complicated lattices, however, it has not been introduced in physics of solid state before. It is evident that the relative displacement of sub-lattices for one period (or for an integer of periods) to a superposition of the sub-lattice with itself reproduces the structure of a complicated lattice. This means that the complicated lattice energy should be a periodic function of the relative rigid displacement of sub-lattices, , invariant to such a translation. The variational equations of macro- and micro-displacements turned out to be a nonlinear generalization of the linear equations of acoustic and optical modes obtained by Karman, Born and Huang. Some exact solutions are obtained for the one-dimensional case, and their specific features are revealed.
Downloads
References
Born M., Huan Kun’. Dinamiceskaa teoria kristalliceskih resetok. - M.: I. L., 1958. - 488 s.
Kosevic A.M. Teoria kristalliceskoj resetki. Fiziceskaa mehanika kristallov. - Har’kov: Visa skola, 1988. - 304 s.
Kunin I.A. Teoria uprugih sred s mikrostrukturoj. - M.: Nauka, 1975. - 415 s.
Cosserat E. et F. Theorie des corps deformables. - Paris: Libraire Scientique A. Hermann et Fils, 1909. - 226 p.
Erofeev V.I. Volnovye processy v tverdyh telah s mikrostrukturoj. - M.: Izd. Mosk. un-ta, 1999. - 327 s.
Lur’e S.A., Belov P.A. Variacionnaa formulirovka matematiceskih modelej sred s mikrostrukturoj // Matematiceskoe modelirovanie sistem i processov: Sb. naucn.trudov. - Perm’: Izd-vo PGTU, 2006. - No 14. - S. 114-132.
Aero E.L. Strukturnye perehody i ustojcivost’ sdvigovyh deformacij v poliatomnyh sloah // Izv. RAN. Neorganiceskie materialy. - 1999. - T. 35, No 8. - S. 860-862.
Aero E.L. Susestvenno nelinejnaa mikromehanika sredy s izmenaemoj periodiceskoj strukturoj // Uspehi mehaniki. - 2002. - T. 1, No 3. - S. 130-176.
Aero E.L. Micromechanics of a double continuum in a model of a medium with variable periodic structure // J. of Eng. Mathem. - 2006. - Vol. 55, N. 1-4. - P. 81-95. DOI
Aero E.L., Bulygin A.N. Sil’no nelinejnaa teoria formirovania nanostruktury vsledstvie uprugih i neuprugih deformacij kristalliceskih tel // Izv. RAN. MTT. - 2007. - No 5. - S. 170-187.
Aero E.L., Bulygin A.N. Nelinejnaa teoria lokalizovannyh voln v sloznyh kristalliceskih resetkah kak diskretno-kontinual’nyh sistemah // Vycisl. meh. splos. sred. - 2008. - T. 1, No 1. - S. 14-30.
Porubov A.V., Aero E.L., Maugin G.A. Two approaches to study essentially nonlinear and dispersive properties of the internal structure of materials // Phys. Rev. E. - 2009. - V. 79, N 4. - P. 046608. DOI
Uizem Dz. Linejnye i nelinejnye volny. - M.: Mir, 1977. - 622 s.
Naimark O.B. Defect induced transitions as mechanisms of plasticity and failure in multifield cintinua // Advances in multifield theories of continua with substructure. Ed.: G. Capriz, P. Mariano. - Boston: Birkhauser, 2004. - P. 75-114.
Downloads
Published
Issue
Section
License
Copyright (c) 2009 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.