On equations of Cosserat-type shells

Authors

  • Holm Altenbach Martin-Luther-Universität Halle-Wittenberg
  • Victor Anatol'evich Eremeyev South Scientific Center of RAS & South Federal University

DOI:

https://doi.org/10.7242/1999-6691/2009.2.4.29

Keywords:

Cosserat shell, micropolar medium, micromorphic medium, micropolar shell, nonlinear elasticity

Abstract

A review of the family of the Cosserat-type nonlinear shell theories is presented. Starting with a general directed deformable surface model withpdirectors, we consider different elastic shell models using the direct approach. For derivation of the governing equations, we use the principle of virtual work and the principle of material frame-indifference applied to the surface density of a strain function. We discuss the interrelation between the most popular models, such as the directed surface model with one deformable director, the micromorphic and micropolar shell models, and the Timoshenko-Reissner-Mindlin model.

Downloads

Download data is not yet available.

References

Cosserat E. et F. Theorie des corps deformables. - Paris: Herman et Fils, 1909. - VI+226 p.
Erofeev V.I. Volnovye processy v tverdyh telah s mikrostrukturoj. - M.: MGU, 1998. - 328s.
Ericksen J.L., Truesdell C. Exact theory of stress and strain in rods and shells // Arch. Ration. Mech. Anal. - 1957. - V. 1, N. 1. - P. 295-323. DOI
Altenbach J., Altenbach H., Eremeyev V.A. On generalized Cosserat-type theories of plates and shells: a short review and bibliography // Arch. Appl. Mech. - 2010. - V. 80, N 1. - P. 73-92. DOI
Altenbach H., Eremeyev V.A. On the linear theory of micropolar plates // Z. Angew. Math. Mech. (ZAMM). - 2009. - V. 89, N. 4. - P. 242-256. DOI
Green A.E., Naghdi P.M., Wainwright W.L. A general theory of a Cosserat surface // Arch. Ration. Mech. Anal. - 1965. - V. 20, N 4. - P. 287-308. DOI
Rubin M.B. Cosserat theories: shells, rods and points. - Dordrecht: Kluwer Acad. Publ., 2000. - 480p
Trusdell K. Pervonacal’nyj kurs racional’noj mehaniki splosnyh sred. - M.: Mir. - 592s.
Eremeev V.A., Zubov L.M. Mehanika uprugih obolocek. - M.: Nauka, 2008. - 287c.
Kauk A.F. Geometriceski nelinejnye zadaci teorii plastin i obolocek. - Kiev: Naukova dumka, 1987. - 208c.
Mindlin R.D. Microstructure in linear elasticity// Arch. Rat. Mech. Analysis. - 1964. - V. 16. - P. 51-78. DOI
Eringen A.C. Microcontinuum field theories. I. Foundations and solids. - Berlin, Heidelberg, N.-Y. et al: Springer-Verlag., 1999. - 325p.
Al’tenbah H., Zilin P.A. Obsaa teoria uprugih prostyh obolocek // Uspehi mehaniki. - 1988. - V. 11, N 4. - P. 107-148.
Zubov L.M. Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies. - Berlin: Springer, 1997. - 205 p.
Eliseev V.V. Mehanika uprugih tel. - SPb.: SPbGTU, 1999. - 341c.
Zilin P.A. Prikladnaa mehanika. Osnovy teorii obolocek: Uceb. posobie. - SPb.: Izd-vo Politehn. un-ta, 2006. - 167s.
Pietraszkiewicz W., Eremeyev V.A. On natural strain measures of the non-linear micropolar continuum // Int. J. Solids Struct. - 2009. - V. 46, N. 3-4. - P. 774-787. DOI
Pietraszkiewicz W., Eremeyev V.A. On vectorially parameterized natural strain measures of the non-linear Cosserat continuum // Int. J. Solids Struct. - 2009. - V. 46, N. 11-12. - P. 24774-2480.
Libai A., Simmonds J.G. The nonlinear theory of elastic shells, 2nd ed. Cambridge, U.K.: Cambridge University Press, 1998. - 560p.
Chroscielewski J., Makowski J., Pietraszkiewicz W. Statics and dynamics of multifold shells. Non-linear theory and finite element method (in Polish). - Warszawa: Wydawnictwo IPPT PAN, 2004. - 612p.
Grigoluk E.I., Selezov I.T. Neklassiceskie teorii kolebanij sterznej, plastin i obolocek // Itogi nauki i tehniki. Ser. Mehanika deformiruemyh tverdyh tel. T. 5. - M.: VINITI, 1973. - 273s.
Simmonds J.G. Some comments on the status of shell theory at the end of the 20th century: Complaints and correctives // AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, 38th, and AIAA/ASME/AHS Adaptive Structures Forum, Kissimmee, FL, Apr. 7-10, 1997, Collection of Technical Papers, Pt. 3 (A97-24112 05-39). - P. 1912-1921.

Published

2009-07-01

Issue

Section

Articles

How to Cite

Altenbach, H. ., & Eremeyev, V. A. (2009). On equations of Cosserat-type shells. Computational Continuum Mechanics, 2(4), 11-18. https://doi.org/10.7242/1999-6691/2009.2.4.29