Study of stability and secondary regimes of thermocapillary flow in a liquid layer under localized heating
DOI:
https://doi.org/10.7242/1999-6691/2009.2.3.23Keywords:
thermocapillary convection, localized heat flux, deformable surface, long-wave approximation, stability analysis, secondary nonlinear regimes, numerical simulationsAbstract
The problem of thermocapillary convection in a thin horizontal layer of viscous incompressible fluid with a deformable free boundary under the action of space-inhomogeneous localized temperature field is considered. The system of nonlinear differential equations for temperature, surface deformation and vorticity amplitudes in the long-wave approximation is solved numerically. The Galerkin method with polynomial basic functions is used to investigate steady states and their stability to infinitesimal two-dimensional disturbances in the cases of planar and axisymmetrical heat fluxes. The dependences of a disturbance decrement on the wave number are obtained for different steady states and parameter values. The forms of eigenfunctions for the most dangerous disturbances are presented. The nonlinear behavior of the disturbances of localized one-dimensional equilibrium states is investigated by the pseudo-spectral method in the two-dimensional formulation. It is shown that there is a domain of parameters in which these states are steady. Beyond its limits, diverse variants of the nonlinear development of disturbances can be realized, which, depending on the parameter values and disturbance magnitude, could lead to formation of the localized structures of another symmetry, global cellular structures of different symmetry and oscillatory regimes of thermocapillary convection.
Downloads
References
Gersuni G.Z., Zuhovickij E.M. Konvektivnaa ustojcivost’ neszimaemoj zidkosti. - M.: Nauka, 1972. - 392c.
Boeck Th., Karcher C. Low-Prandtl-number Marangoni convection driven by localized heating on the free surface: results of three-dimensional direct simulations // Interfacial Fluid Dynamics and Transport Processes: Lecture Notes in Physics / R. Narayanan, D. Schwabe (Eds). - 2003. - N. 628. - P. 157 -175.
Polezaev V.I., Bello M.S., Verezub N.A. i dr. Konvektivnye processy v nevesomosti. - M.: Nauka, 1991. - 240 s.
Bezuglyj B.A., Ivanova N.A., Zueva A.U. Termokapillarnaa deformacia tonkogo sloa zidkosti, vyzvannaa puckom lazera // PMTF. - 2001. -T. 42, No 3. - S. 130-134.
Bezuglyj B.A., Flagin V.M. Termokapillarnaa konvekcia v sloe zidkosti s kvazitocecnym istocnikom tepla v podlozke // Izv. RAN. MZG. - 2007. - No 6. - S. 124-134.
Kazenin D.A., Karlov S.P., Sitikov E.S. Nestacionarnaa deformacia svobodnoj poverhnosti zidkosti pri lokal’nom vozdejstvii lazernogo izlucenia // Trudy Pervoj Rossijskoj nacional’noj konferencii po teploobmenu. - M.: MEI, 1994. - T. 6. Dvuhfaznye tecenia. - S. 96-99.
Mizev A.I. Eksperimental’noe issledovanie termokapillarnoj konvekcii, inducirovannoj lokal’noj temperaturnoj neodnorodnost’u vblizi poverhnosti zidkosti. 2. Istocnik tepla, inducirovannyj izluceniem // PMTF. - 2004. - T. 45, No 5. - S. 102-108.
Karlov S.P., Kazenin D.A., Myznikova B.I., Wertgeim I.I. Experimental and numerical study of the Marangoni convection due to localized laser heating // J. Nonequilibrium Thermodynamics. - 2005. - V. 30, N. 3. - P. 283-304.
Mizev A.I. Eksperimental’noe issledovanie termokapillarnoj konvekcii, inducirovannoj lokal’noj temperaturnoj neodnorodnost’u vblizi poverhnosti zidkosti. 1. Tverdotel’nyj istocnik tepla. // PMTF. - 2004. - T. 45, No 4. - S. 36-49.
Hoyas S., Herrero H., Mancho A.M. Thermocapillary and thermogravitatory waves in a convection problem // Theoret. Comput. Fluid Dynamics. - 2004. -V. 18. - P. 309-321. DOI
Navarro M. C., Mancho A. M., Herrero H. Instabilities in buoyant flows under localized heating // Chaos. - 2007. - V. 17. - P. 023105. DOI
Golovin A.A., Nepomnyashchy A.A. and Pismen L.M. Pattern formation in large-scale Marangoni convection with deformable interface // Physica D. - 1995. - V. 81. - P. 117-147. DOI
Vertgejm I.I., Myznikova B.I. Ustojcivost’ i struktura termokapillarnogo tecenia v gorizontal’nom sloe s lokalizovannym nagrevom // Gidrodinamika: Mezvuz. sb. nauc. tr. - Perm’: PGU, 2002. - Vyp. 13. - S. 39-55.
Wertgeim I.I., Kumachkov M.A. Stationary and nonstationary regimes of thermocapillary convection at localized heating of liquid layer // Fundameltal And Environmental Fluid Mechanics / Int. Conf. <> (St.-Petersburg, Russia, July 2-5, 2007). Selected papers. - Moscow: Inst. for Probl. in Mech. RAS Publishers, 2008. - P. 215-220.
D’akonov V.P. Mathematica 5.1/5.2/6 v matematiceskih i naucno-tehniceskih rascetah. - M.: SOLON-PRESS, 2008. - 744 c.
Golovin A.A., Nepomnyashchy A.A., Pismen L.M. Non-Potential Effects in Nonlinear Dynamics of Marangoni Convection // Int. J. Bifurc. Chaos. - 2002. -V. 12, N. 11. -P. 2487-2500. DOI
Downloads
Published
Issue
Section
License
Copyright (c) 2009 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.