Modeling of fracture toughness of composite materials
DOI:
https://doi.org/10.7242/1999-6691/2009.2.2.10Keywords:
composite materials, adhesion junctions, cracks, process zone, fracture criterion, fracture toughnessAbstract
A model of fracture of composites materials and adhesion junctions is proposed. The model is based on the analysis of the process zone formed near the crack tip. It is assumed that the process zone is a layer of finite length with weakened bonds between the material particles (the end zone). This zone is considered as a part of the crack. The interaction of crack surfaces is modeled by applying adhesion forces caused by bonds to crack surfaces. In the framework of the present end-zone model, the analysis of the limit equilibrium of cracks involves: (a) definition of relationships between adhesion forces and crack opening, (b) evaluation of displacements and stresses around the crack taking account of external loads and adhesion forces, and (c) definition of the dependence of critical external loads on the crack length. The analysis is based on a fracture criterion with an energy conditionfor the advance of the crack tipand a kinematic condition of the bond rupture. The results of calculation of fracture parameters are presented.
Downloads
References
Rose L.R.F. Crack reinforcement by distributed springs. // J. Mech. Phys. Solids. - 1987. - V. 35, No 4. - P. 383-405 DOI
Cox B.N., Marshall D.B. Concepts for bridged cracks in fracture and fatigue. // Acta metal. mater. - 1994. - V. 42, No 2. - P. 341-363. DOI
Budiansky B., Cui Y.L, On the tensile strength of a fiber-reinforced ceramic composite containing a crack-like flaw // Journal of Mechanics and Physics of Solids. - 1994. - V. 42, No 1. - P. 1-19 DOI
Barenblatt G.I. O ravnovesnyh tresinah, obrazuusihsa pri hrupkom razrusenii // PMM. - 1959. - T. 23, vyp. 3. - S. 434-444; vyp. 4. - S. 706-721; vyp. 5. - S. 893-900.
Leonov M.A., Panasuk V.V. Razvitie mel’cajsih tresin v tverdom tele // Prikl. mehanika. - 1959. - T. 5, No 4. - S.391-401.
Dugdale D.S. Yielding of steel sheets containing slits // J. Mech. Phys. Solids. - 1960. - V. 8, No 2. - P. 100-104. DOI
Goldstein R. V., Perelmuter M. N. Modeling of bonding at an interface crack // Int. J. of Fracture. - 1999. - V. 99, No 1-2. - P. 53-79. DOI
Gol’dstejn R.V. Perel’muter M.N. Tresina na granice soedinenia materialov so svazami mezdu beregami. // Izv. RAN. MTT. - 2001. - No 1. - C. 94-112.
Perel’muter M.N. Kriterij rosta tresin so svazami v koncevoj oblasti // PMM. - 2007. - T. 71, vyp. 1. - C. 152-171.
Grekov M.A., Morozov N.F. O ravnovesnyh tresinah v kompozitah, armirovannyh odnonapravlennymi voloknami // PMM. - 2006. - T. 70, vyp. 6. - S. 1054-1066.
Goldstein R.V., Bakirov V.F., Perelmuter M.N. Modeling of the adhesion strength and fracture kinetics of the microelectronic package polymer-polymer joints // Proc. Inst. Phys. Technol., Russian Ac. of Sci. - 1997. - V. 13. Modeling and Simulation of Submicron Technology and Devices. - P. 115-125
Rice J.R., Sih G.C. Plane problems of cracks in dissimilar media // Trans. ASME. J. Appl. Mech. -1965. - V. 32. - P. 218-224. DOI
Slepan L.I. Mehanika tresin. - L.: Sudostroenie, 1981. - 295s.
Birger I.A. Rascet konstrukcij s ucetom plasticnosti i polzucesti. // Izv. AN SSSR. Mehanika. - 1965. - No 2. - C. 113-119.
Salganik R.L. O hrupkom razrusenii skleennyh tel // PMM. - 1963. - T. 27, vyp. 5. - C. 957-962.
Gol’dstejn R.V. Osipenko N.M. Balocnoe priblizenie v zadacah otsloenia tonkih pokrytij // Izv. RAN. MTT. - 2003. - No 5. - C. 154-163.
Gol’dstejn R.V. Osipenko N.M. Modelirovanie otsloenij pokrytij pri teromomehaniceskom nagruzenii v balocnom priblizenii // Izv. RAN. MTT. -2007. - No 5. - C. 75-90.
The special issue: Cohesive models // Eng. Fract. Mech. - 2003. - V. 70, No 14. - P. 1741-1987. DOI
Downloads
Published
Issue
Section
License
Copyright (c) 2009 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.